Visualizations of the disturbed-laminar wave-induced flow above a rippled bed

Visualizations of the disturbed-laminar wave-induced flow above a rippled bed This paper discusses visualizations of wave-induced flow over a rippled bed. Experiments were conducted in a wave tank fitted with a rigid rippled bed, and flow visualizations were carried out using a fluorescent dye filmed by a digital high speed video camera. Secondary flow regimes are classified in terms of key parameters such as the ripple slope, the ratio of the amplitude of the external flow to the ripple wavelength, and a Taylor number. For weak oscillations over gentle ripples, two-dimensional structures develop in the form of large recirculation cells, while for stronger flows over medium to steep ripples these are modified by the onset of separation and vortex shedding. Three-dimensional instabilities lead to disturbed-laminar flow structures of two different forms. The most common and stable form is a structure of rings that has a well-defined transverse wavelength that is found to be inversely proportional to a Taylor number. The other form, a brick pattern, is more transient in nature but is probably also related to the development of three-dimensional ripple shapes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Visualizations of the disturbed-laminar wave-induced flow above a rippled bed

Loading next page...
 
/lp/springer_journal/visualizations-of-the-disturbed-laminar-wave-induced-flow-above-a-TTJMRQ5zGg
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0774-y
Publisher site
See Article on Publisher Site

Abstract

This paper discusses visualizations of wave-induced flow over a rippled bed. Experiments were conducted in a wave tank fitted with a rigid rippled bed, and flow visualizations were carried out using a fluorescent dye filmed by a digital high speed video camera. Secondary flow regimes are classified in terms of key parameters such as the ripple slope, the ratio of the amplitude of the external flow to the ripple wavelength, and a Taylor number. For weak oscillations over gentle ripples, two-dimensional structures develop in the form of large recirculation cells, while for stronger flows over medium to steep ripples these are modified by the onset of separation and vortex shedding. Three-dimensional instabilities lead to disturbed-laminar flow structures of two different forms. The most common and stable form is a structure of rings that has a well-defined transverse wavelength that is found to be inversely proportional to a Taylor number. The other form, a brick pattern, is more transient in nature but is probably also related to the development of three-dimensional ripple shapes.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off