Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulator

Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulator The quantum Fourier transform (QFT) is a key subroutine of quantum algorithms for factoring and simulation and is the heart of the hidden-subgroup problem, the solution of which is expected to lead to the development of new quantum algorithms. The QFT acts on the Hilbert space and alters the quantum mechanical phases and probability amplitudes. Unlike its classical counterpart its schematic representation and visualization are very dif.cult. The aim of this work is to develop a schematic representation and visualization of the QFT by running it on a quantum computer simulator which has been constructed in the framework of this research. Base states, superpositions of base states and entangled states are transformed and the corresponding schematic representations are presented. The visualization of the QFT presented here and the quantum computer simulator developed for this purpose may become a useful tool for introducing the QFT to students and researches without a strong background in quantum mechanics or Fourier analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulator

Loading next page...
 
/lp/springer_journal/visualization-of-the-quantum-fourier-transform-using-a-quantum-Fu8jP0pwPG
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by Plenum Publishing Corporation
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/B:QINP.0000020076.36114.13
Publisher site
See Article on Publisher Site

Abstract

The quantum Fourier transform (QFT) is a key subroutine of quantum algorithms for factoring and simulation and is the heart of the hidden-subgroup problem, the solution of which is expected to lead to the development of new quantum algorithms. The QFT acts on the Hilbert space and alters the quantum mechanical phases and probability amplitudes. Unlike its classical counterpart its schematic representation and visualization are very dif.cult. The aim of this work is to develop a schematic representation and visualization of the QFT by running it on a quantum computer simulator which has been constructed in the framework of this research. Base states, superpositions of base states and entangled states are transformed and the corresponding schematic representations are presented. The visualization of the QFT presented here and the quantum computer simulator developed for this purpose may become a useful tool for introducing the QFT to students and researches without a strong background in quantum mechanics or Fourier analysis.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 11, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off