Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulator

Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulator The quantum Fourier transform (QFT) is a key subroutine of quantum algorithms for factoring and simulation and is the heart of the hidden-subgroup problem, the solution of which is expected to lead to the development of new quantum algorithms. The QFT acts on the Hilbert space and alters the quantum mechanical phases and probability amplitudes. Unlike its classical counterpart its schematic representation and visualization are very dif.cult. The aim of this work is to develop a schematic representation and visualization of the QFT by running it on a quantum computer simulator which has been constructed in the framework of this research. Base states, superpositions of base states and entangled states are transformed and the corresponding schematic representations are presented. The visualization of the QFT presented here and the quantum computer simulator developed for this purpose may become a useful tool for introducing the QFT to students and researches without a strong background in quantum mechanics or Fourier analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Visualization of the Quantum Fourier Transform Using a Quantum Computer Simulator

Loading next page...
 
/lp/springer_journal/visualization-of-the-quantum-fourier-transform-using-a-quantum-Fu8jP0pwPG
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by Plenum Publishing Corporation
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/B:QINP.0000020076.36114.13
Publisher site
See Article on Publisher Site

Abstract

The quantum Fourier transform (QFT) is a key subroutine of quantum algorithms for factoring and simulation and is the heart of the hidden-subgroup problem, the solution of which is expected to lead to the development of new quantum algorithms. The QFT acts on the Hilbert space and alters the quantum mechanical phases and probability amplitudes. Unlike its classical counterpart its schematic representation and visualization are very dif.cult. The aim of this work is to develop a schematic representation and visualization of the QFT by running it on a quantum computer simulator which has been constructed in the framework of this research. Base states, superpositions of base states and entangled states are transformed and the corresponding schematic representations are presented. The visualization of the QFT presented here and the quantum computer simulator developed for this purpose may become a useful tool for introducing the QFT to students and researches without a strong background in quantum mechanics or Fourier analysis.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 11, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off