Visualization of the hinge flow in a 5:1 scaled model of the medtronic parallel bileaflet heart valve prosthesis

Visualization of the hinge flow in a 5:1 scaled model of the medtronic parallel bileaflet heart...  In this work, a flow visualization experiment was performed to elucidate features of the retrograde hinge flow through a 5 : 1 scaled model of the Medtronic Parallel bileaflet heart valve. It was hypothesized that this model would provide detailed flow information facilitating identification of flow structures associated with thrombus formation in this valve. The experimental protocol was designed to ensure fluid dynamic similarity between the model and prototype heart valves. Flow was visualized using dye injection. The detailed flow structures observed showed the hinge’s inflow channel was the most suspect region for thrombus formation. Here a complex helical structure was observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Visualization of the hinge flow in a 5:1 scaled model of the medtronic parallel bileaflet heart valve prosthesis

Loading next page...
 
/lp/springer_journal/visualization-of-the-hinge-flow-in-a-5-1-scaled-model-of-the-medtronic-zhTr30kvTj
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050257
Publisher site
See Article on Publisher Site

Abstract

 In this work, a flow visualization experiment was performed to elucidate features of the retrograde hinge flow through a 5 : 1 scaled model of the Medtronic Parallel bileaflet heart valve. It was hypothesized that this model would provide detailed flow information facilitating identification of flow structures associated with thrombus formation in this valve. The experimental protocol was designed to ensure fluid dynamic similarity between the model and prototype heart valves. Flow was visualized using dye injection. The detailed flow structures observed showed the hinge’s inflow channel was the most suspect region for thrombus formation. Here a complex helical structure was observed.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 19, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off