Visualization of Chromosome Territories in Interphase Nuclei of Ovarian Nurse Cells in Calliphora erythrocephala Mg. (Diptera: Calliphoridae)

Visualization of Chromosome Territories in Interphase Nuclei of Ovarian Nurse Cells in Calliphora... Analysis of localization of chromosomes 2, 3, and 6 of Calliphora erythrocephala Mg. in ovarian nurse cell nuclei with different chromatin structure has shown that the regions of DNA probe hybridization reduced with increasing chromatin compaction. Hybridization of DNA probes of chromosomes 3 and 6 to secondary reticular nuclei demonstrated that chromosomes retain their territories in the nuclei when the chromatin acquires a reticular structure. These results suggest regular organization of the chromosomal apparatus at all stages of the endomitotic cycle, including the stage of highly polyploid reticular nuclei. FISH of DNA probe of the chromosome 2 telomeric region to secondary reticular nuclei revealed a peripheral distribution of the signal. Zones of more intensive DNA probe hybridization have been distinguished. These zones probably are the regions of accumulation of telomeric and (or) centromeric chromosome regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Visualization of Chromosome Territories in Interphase Nuclei of Ovarian Nurse Cells in Calliphora erythrocephala Mg. (Diptera: Calliphoridae)

Loading next page...
 
/lp/springer_journal/visualization-of-chromosome-territories-in-interphase-nuclei-of-iwHaZ7W3Vf
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1007/s11177-005-0207-5
Publisher site
See Article on Publisher Site

Abstract

Analysis of localization of chromosomes 2, 3, and 6 of Calliphora erythrocephala Mg. in ovarian nurse cell nuclei with different chromatin structure has shown that the regions of DNA probe hybridization reduced with increasing chromatin compaction. Hybridization of DNA probes of chromosomes 3 and 6 to secondary reticular nuclei demonstrated that chromosomes retain their territories in the nuclei when the chromatin acquires a reticular structure. These results suggest regular organization of the chromosomal apparatus at all stages of the endomitotic cycle, including the stage of highly polyploid reticular nuclei. FISH of DNA probe of the chromosome 2 telomeric region to secondary reticular nuclei revealed a peripheral distribution of the signal. Zones of more intensive DNA probe hybridization have been distinguished. These zones probably are the regions of accumulation of telomeric and (or) centromeric chromosome regions.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Nov 11, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off