Visualization of a locally-forced separated flow over a backward-facing step

Visualization of a locally-forced separated flow over a backward-facing step  A laboratory water channel experiment was made of the separated flow over a backward-facing step. The flow was excited by a sinusoidally oscillating jet issuing from a separation line. The slit was connected to a cavity in which water was forced through a rigid pipe by a scotch-yoke system. The Reynolds number based on the step height (H) was fixed at Re H =1200. The forcing frequency was varied in the range 0.305?St H ?0.955 at the forcing amplitude A 0=0.3. Time-averaged flow measurements were made by a LDV system, especially in the recirculating region behind the backward-facing step. To characterize the large-scale vortex evolution due to the local forcing, flow visualizations were performed by a dye tracer method with fluorescent ink. The vortex amalgamation process was captured at the effective forcing frequency (St H =0.477) for laminar separation. This vortex merging process enhances flow mixing, which leads to the shortening of the reattachment length. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Visualization of a locally-forced separated flow over a backward-facing step

Loading next page...
 
/lp/springer_journal/visualization-of-a-locally-forced-separated-flow-over-a-backward-IwRy3hECrY
Publisher
Springer Journals
Copyright
Copyright © 1998 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050217
Publisher site
See Article on Publisher Site

Abstract

 A laboratory water channel experiment was made of the separated flow over a backward-facing step. The flow was excited by a sinusoidally oscillating jet issuing from a separation line. The slit was connected to a cavity in which water was forced through a rigid pipe by a scotch-yoke system. The Reynolds number based on the step height (H) was fixed at Re H =1200. The forcing frequency was varied in the range 0.305?St H ?0.955 at the forcing amplitude A 0=0.3. Time-averaged flow measurements were made by a LDV system, especially in the recirculating region behind the backward-facing step. To characterize the large-scale vortex evolution due to the local forcing, flow visualizations were performed by a dye tracer method with fluorescent ink. The vortex amalgamation process was captured at the effective forcing frequency (St H =0.477) for laminar separation. This vortex merging process enhances flow mixing, which leads to the shortening of the reattachment length.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 17, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off