Visualization and two-color DPIV measurements of flows in circular and square coaxial nozzles

Visualization and two-color DPIV measurements of flows in circular and square coaxial nozzles  High-resolution, reactive Mie scattering laser-sheet visualizations, two-color digital particle image velocimetry (DPIV) and thermal anemometry measurements in flows generated by equivalent coaxial circular and square jets are presented. Visualization results were obtained for three square, coaxial configurations, and a reference circular coaxial nozzle, at two Reynolds numbers of the outer jet (19,000 and 29,000) and for inner-to-outer jet velocity ratios of 0.15, 0.22, and 0.3. These indicated that the internal unmixed region diminished with decreasing velocity ratio. Strong evidence of unsteady recirculation and back-flow was observed at the end of the core of the inner jet, for the low velocity ratios. Comparisons between circular and square jet configurations indicated considerable mixing enhancement when square nozzles were used. Low-coherence, organized large-scale structure was evident from the visualizations and DPIV measurements near the origin of the inner mixing-region shear layers, and more so in the core region of the near field. These observations were confirmed by velocity spectra, which displayed peaks corresponding to a free shear-layer instability mode in the inner mixing-region shear layers, and a wake-type mode in the core region where the mean flow has a wake-like character. Although some large-scale structure was observed in the outer mixing layer during the visualizations, this was found to be incoherent on the basis of the DPIV measurements and the velocity spectra. It is noted that no axis-switching phenomena were observed in the square nozzle flows examined here. This is attributed to the absence of an organized structure in the outer shear layer, which was initially highly turbulent, and the weakly coherent nature of the organized structure observed in the inner mixing-region near field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Visualization and two-color DPIV measurements of flows in circular and square coaxial nozzles

Loading next page...
 
/lp/springer_journal/visualization-and-two-color-dpiv-measurements-of-flows-in-circular-and-KsCdbkf0KD
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480000251
Publisher site
See Article on Publisher Site

Abstract

 High-resolution, reactive Mie scattering laser-sheet visualizations, two-color digital particle image velocimetry (DPIV) and thermal anemometry measurements in flows generated by equivalent coaxial circular and square jets are presented. Visualization results were obtained for three square, coaxial configurations, and a reference circular coaxial nozzle, at two Reynolds numbers of the outer jet (19,000 and 29,000) and for inner-to-outer jet velocity ratios of 0.15, 0.22, and 0.3. These indicated that the internal unmixed region diminished with decreasing velocity ratio. Strong evidence of unsteady recirculation and back-flow was observed at the end of the core of the inner jet, for the low velocity ratios. Comparisons between circular and square jet configurations indicated considerable mixing enhancement when square nozzles were used. Low-coherence, organized large-scale structure was evident from the visualizations and DPIV measurements near the origin of the inner mixing-region shear layers, and more so in the core region of the near field. These observations were confirmed by velocity spectra, which displayed peaks corresponding to a free shear-layer instability mode in the inner mixing-region shear layers, and a wake-type mode in the core region where the mean flow has a wake-like character. Although some large-scale structure was observed in the outer mixing layer during the visualizations, this was found to be incoherent on the basis of the DPIV measurements and the velocity spectra. It is noted that no axis-switching phenomena were observed in the square nozzle flows examined here. This is attributed to the absence of an organized structure in the outer shear layer, which was initially highly turbulent, and the weakly coherent nature of the organized structure observed in the inner mixing-region near field.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off