Visna virus-induced cytopathic effect in vitro is caused by apoptosis

Visna virus-induced cytopathic effect in vitro is caused by apoptosis Visna-Maedi virus (VMV), an ungulate lentivirus, causes a natural infection in sheep. In vitro, VMV infection and replication lead to strong cytopathic effects with subsequent death of host cells. We investigated, in vitro, the relative contribution of apoptosis or programmed cell death (PCD) to cell killing during acute infection with VMV, by employing diverse strategies to detect its common end-stage alterations. We demonstrated that VMV-infection in sheep choroid plexus cells (SCPC), is associated with apoptosis, characterized by morphological changes such as condensation of chromatin and the appearence of apoptotic bodies. DNA fragmentation was documented by TUNEL assay. Although the mechanism by which VMV activates this cell suicide program is not known, we examined the activation of caspases, the family of death-inducing proteases that resulted in cleavage of several cellular substrates. To study the role of caspases in VMV-induced apoptosis, we focused on several protease targets: procaspase-3 and procaspase-1. During VMV-infection, SCPC display active caspase-3 and no caspase-1 activity. In conclusion, our results suggest that VMV infection, in vitro, induces cell death of SCPC by a mechanism that can be characterized by many of the properties most closely associated with apoptotic cell death. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Visna virus-induced cytopathic effect in vitro is caused by apoptosis

Loading next page...
 
/lp/springer_journal/visna-virus-induced-cytopathic-effect-in-vitro-is-caused-by-apoptosis-gVPk200NC5
Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-001-0791-1
Publisher site
See Article on Publisher Site

Abstract

Visna-Maedi virus (VMV), an ungulate lentivirus, causes a natural infection in sheep. In vitro, VMV infection and replication lead to strong cytopathic effects with subsequent death of host cells. We investigated, in vitro, the relative contribution of apoptosis or programmed cell death (PCD) to cell killing during acute infection with VMV, by employing diverse strategies to detect its common end-stage alterations. We demonstrated that VMV-infection in sheep choroid plexus cells (SCPC), is associated with apoptosis, characterized by morphological changes such as condensation of chromatin and the appearence of apoptotic bodies. DNA fragmentation was documented by TUNEL assay. Although the mechanism by which VMV activates this cell suicide program is not known, we examined the activation of caspases, the family of death-inducing proteases that resulted in cleavage of several cellular substrates. To study the role of caspases in VMV-induced apoptosis, we focused on several protease targets: procaspase-3 and procaspase-1. During VMV-infection, SCPC display active caspase-3 and no caspase-1 activity. In conclusion, our results suggest that VMV infection, in vitro, induces cell death of SCPC by a mechanism that can be characterized by many of the properties most closely associated with apoptotic cell death.

Journal

Archives of VirologySpringer Journals

Published: May 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off