Vision-based surveillance system for monitoring traffic conditions

Vision-based surveillance system for monitoring traffic conditions With the rapid advancement of sensing technologies, it has been feasible to collect various types of traffic data such as traffic volume and travel times. Vision-based approach is one of the major scheme actively used for the automated traffic data collection, and continues to gain traction to a broader utilization. It collects video streams from cameras installed near roads, and processes the video streams frame by frame using image processing algorithms. The widely used algorithms include vehicle detection and vehicle tracking which recognize every vehicle in the camera view and track it in the consecutive frames. Vehicle counts and speed can be estimated from the detection and tracking results. Continuous efforts have been made for the performance improvement of the algorithms and for their effective applications. However, little research has been found on the application to the various view settings of highway CCTV cameras as well as the reliability of the speed estimation. This paper proposes a vision-based system that integrates vehicle detection, vehicle tracking, and field of view calibration algorithms to obtain vehicle counting data and to estimate individual vehicle speed. The proposed system is customized for the video streams collected from highway CCTVs which have various settings in terms of focus and view angles. The system detects and tracks every vehicle in the view unless it is occluded by other vehicles. It is also capable of handling occlusions that occurs frequently depending on the view angles. The system has been tested on the several different views including congested scenes. Vehicle counts and speed estimation results are compared to the manual counting and GPS data, respectively. The comparison signifies that the system has a high potential to extract reliable information about highway traffic conditions from highway CCTVs. Multimedia Tools and Applications Springer Journals

Vision-based surveillance system for monitoring traffic conditions

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial