Visible-light-responsive photocatalytic reaction on tetrahedrally-coordinated chromium oxide moieties loaded on ZSM-5 zeolites and HMS mesoporous silica: partial oxidation of propane

Visible-light-responsive photocatalytic reaction on tetrahedrally-coordinated chromium oxide... Chromium oxide (Cr-oxide) moieties loaded on ZSM-5 zeolites and HMS mesoporous silica molecular sieves were prepared by an impregnation method and characterized by various spectroscopic methods (XRD, XAFS, UV-Vis, photoluminescence) and their photocatalytic reactivities for partial oxidation of propane under visible light irradiation were investigated. The local structure of Cr-oxide species depended to a large extent on the zeolite types and Si/A1 ratios of zeolites. Tetrahedrally-coordinated isolated Cr-oxide moieties can be loaded on HMS and ZSM-5 having the higher Si/A1 ratios. On these catalysts, in the presence of propane and O2, a partial oxidation proceeded under visible light irradiation to produce acetone with high selectivity. The charge-transfer excited state of the tetrahedral Cr-oxide moieties plays a significant role in the selective photocatalytic reactions under visible light irradiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Visible-light-responsive photocatalytic reaction on tetrahedrally-coordinated chromium oxide moieties loaded on ZSM-5 zeolites and HMS mesoporous silica: partial oxidation of propane

Loading next page...
 
/lp/springer_journal/visible-light-responsive-photocatalytic-reaction-on-tetrahedrally-M6fCcAXraQ
Publisher
Springer Netherlands
Copyright
Copyright © 2003 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856703322601870
Publisher site
See Article on Publisher Site

Abstract

Chromium oxide (Cr-oxide) moieties loaded on ZSM-5 zeolites and HMS mesoporous silica molecular sieves were prepared by an impregnation method and characterized by various spectroscopic methods (XRD, XAFS, UV-Vis, photoluminescence) and their photocatalytic reactivities for partial oxidation of propane under visible light irradiation were investigated. The local structure of Cr-oxide species depended to a large extent on the zeolite types and Si/A1 ratios of zeolites. Tetrahedrally-coordinated isolated Cr-oxide moieties can be loaded on HMS and ZSM-5 having the higher Si/A1 ratios. On these catalysts, in the presence of propane and O2, a partial oxidation proceeded under visible light irradiation to produce acetone with high selectivity. The charge-transfer excited state of the tetrahedral Cr-oxide moieties plays a significant role in the selective photocatalytic reactions under visible light irradiation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 8, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off