Visible light induced oxygenation of cyclohexene with activation of water sensitized by dihydroxy coordinated tetraphenyloprphyrinatotin(IV)

Visible light induced oxygenation of cyclohexene with activation of water sensitized by dihydroxy... Visible light irradiation of a reaction mixture containing dihydroxy coordinated tetraphenylporphyrinatotin(IV), cyclohexene and potassium hexachloroplatinate induced oxygenation of the cyclohexene under degassed conditions. In the reaction system, a water molecule served as the oxygen donor. Cyclohex-2-enol, 1,2-dichlorocyclohexane and 2-chlorocyclohexanol were the major oxidation products and the quantum yield was around 0.1. An experiment using H2 18O revealed that an 18O atom was quantitatively incorporated into the oxygenated products. The reaction was initially induced by an electron transfer from an excited triplet porphyrin to potassium hexachloroplatinate producing a cation radical of the porphyrin. Metal-oxo type complexes formed through deprotonation of the hydroxy group of the porphyrin cation radical were key reactive intermediates reacting with cyclohexene. Two kinds of the metal-oxo type complex reactive intermediate were kinetically demonstrated to be involved in the reaction system, producing different oxidation products from cyclohexene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Visible light induced oxygenation of cyclohexene with activation of water sensitized by dihydroxy coordinated tetraphenyloprphyrinatotin(IV)

Loading next page...
 
/lp/springer_journal/visible-light-induced-oxygenation-of-cyclohexene-with-activation-of-QUleTX4Ibj
Publisher
Brill Academic Publishers
Copyright
Copyright © 2000 by VSP
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856700X00219
Publisher site
See Article on Publisher Site

Abstract

Visible light irradiation of a reaction mixture containing dihydroxy coordinated tetraphenylporphyrinatotin(IV), cyclohexene and potassium hexachloroplatinate induced oxygenation of the cyclohexene under degassed conditions. In the reaction system, a water molecule served as the oxygen donor. Cyclohex-2-enol, 1,2-dichlorocyclohexane and 2-chlorocyclohexanol were the major oxidation products and the quantum yield was around 0.1. An experiment using H2 18O revealed that an 18O atom was quantitatively incorporated into the oxygenated products. The reaction was initially induced by an electron transfer from an excited triplet porphyrin to potassium hexachloroplatinate producing a cation radical of the porphyrin. Metal-oxo type complexes formed through deprotonation of the hydroxy group of the porphyrin cation radical were key reactive intermediates reacting with cyclohexene. Two kinds of the metal-oxo type complex reactive intermediate were kinetically demonstrated to be involved in the reaction system, producing different oxidation products from cyclohexene.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 1, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off