Visible-light-driven photocatalytic degradation of microcystin-LR by Bi-doped TiO2

Visible-light-driven photocatalytic degradation of microcystin-LR by Bi-doped TiO2 Bi-doped nano-crystalline TiO2 (Bi–TiO2) has been synthesized by sonocrystallization at low temperature. The Bi–TiO2 materials have narrower bandgaps than pristine TiO2, which endow them with significant visible light absorption. Accordingly, these materials had enhanced photocatalytic activity in the degradation of organic dye pollutants and the cyanotoxin microcystin-LR (MC-LR) under visible irradiation. It was found that degradation of MC-LR is rather efficient. After irradiation with visible light for 12 h the original MC-LR was removed completely, and 78% of the organic carbon was mineralized into CO2 after irradiation for 20 h. The hydroxyl radical (·OH) is the major active species responsible for the degradation reaction. Identified intermediates primarily originate from attack of ·OH radicals on the double bonds between C4 and C5 (C6 and C7) of Adda and the ethylenic bond of Mdha in MC-LR. Some peptide bonds are also broken with longer irradiation time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Visible-light-driven photocatalytic degradation of microcystin-LR by Bi-doped TiO2

Loading next page...
 
/lp/springer_journal/visible-light-driven-photocatalytic-degradation-of-microcystin-lr-by-0rW2NvEVI0
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-010-0224-4
Publisher site
See Article on Publisher Site

Abstract

Bi-doped nano-crystalline TiO2 (Bi–TiO2) has been synthesized by sonocrystallization at low temperature. The Bi–TiO2 materials have narrower bandgaps than pristine TiO2, which endow them with significant visible light absorption. Accordingly, these materials had enhanced photocatalytic activity in the degradation of organic dye pollutants and the cyanotoxin microcystin-LR (MC-LR) under visible irradiation. It was found that degradation of MC-LR is rather efficient. After irradiation with visible light for 12 h the original MC-LR was removed completely, and 78% of the organic carbon was mineralized into CO2 after irradiation for 20 h. The hydroxyl radical (·OH) is the major active species responsible for the degradation reaction. Identified intermediates primarily originate from attack of ·OH radicals on the double bonds between C4 and C5 (C6 and C7) of Adda and the ethylenic bond of Mdha in MC-LR. Some peptide bonds are also broken with longer irradiation time.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 8, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off