Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators

Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators This paper deals with the behavior of a rubber-layer roller bearing (RLRB) isolation system. This system consists of steel cylinders interposed between steel plates padded with high damping rubber layers. When the cylinders start to roll, a partial decoupling is achieved between the superstructure response and the ground motion. However, the presence of rubber layers in RLRB isolators aims at dissipating part of the seismic energy, thus reducing the relative motion between the base and the superstructure (building). To better understand this phenomenon, we proceeded to a mechanistic study of the viscoelastic contact interaction between the rolling cylinders and the rubber layers. The analysis is led in the framework of continuum mechanics and linear viscoelasticity by means of a numerical strategy, belonging to the class of boundary element methods, able to take into account the viscoelastic layer thickness. The results show that, depending on the design parameters, a strong reduction of the viscoelastic friction can be achieved, useful to uncouple the motion of the superstructure from the motion of the base and then of the ground, without negatively affecting the amount of energy dissipation per unit time. The simulations allow determining the optimal sizes and dimensions to the component parts of the isolator. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Meccanica Springer Journals

Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators

Loading next page...
 
/lp/springer_journal/viscoelastic-frictional-properties-of-rubber-layer-roller-bearings-sUhA8xFoOq
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Physics; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0025-6455
eISSN
1572-9648
D.O.I.
10.1007/s11012-016-0612-y
Publisher site
See Article on Publisher Site

Abstract

This paper deals with the behavior of a rubber-layer roller bearing (RLRB) isolation system. This system consists of steel cylinders interposed between steel plates padded with high damping rubber layers. When the cylinders start to roll, a partial decoupling is achieved between the superstructure response and the ground motion. However, the presence of rubber layers in RLRB isolators aims at dissipating part of the seismic energy, thus reducing the relative motion between the base and the superstructure (building). To better understand this phenomenon, we proceeded to a mechanistic study of the viscoelastic contact interaction between the rolling cylinders and the rubber layers. The analysis is led in the framework of continuum mechanics and linear viscoelasticity by means of a numerical strategy, belonging to the class of boundary element methods, able to take into account the viscoelastic layer thickness. The results show that, depending on the design parameters, a strong reduction of the viscoelastic friction can be achieved, useful to uncouple the motion of the superstructure from the motion of the base and then of the ground, without negatively affecting the amount of energy dissipation per unit time. The simulations allow determining the optimal sizes and dimensions to the component parts of the isolator.

Journal

MeccanicaSpringer Journals

Published: Jan 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off