Villus and Crypt Cell Composition in the Secreting Mouse Jejunum Measured with X-ray Microanalysis

Villus and Crypt Cell Composition in the Secreting Mouse Jejunum Measured with X-ray Microanalysis The response of the villus and crypt cells of the mouse jejunum to secretagogues has been assessed through measurements of cellular composition with x-ray microanalysis. In nonstimulated tissues the Na concentration ([Na]c) of the crypt cells was significantly less, and the K ([K]c) and Cl ([Cl]c) concentrations were significantly greater, than that of the villus cells. There was also a decreasing gradient of [Na]c and increasing gradient of [K]c from the villus tip to crypt base due to a greater number of cells with a high [Na]c and low [K]c in the upper regions of the villi. Theophylline (10 mmol L−1) stimulated a sustained increase in bumetanide sensitive short circuit current (Isc) and significantly decreased the [Na]c of the villus cells. Similar, but smaller changes were seen in the crypt cells. Changes in villus cell [Na]c reflected a reduction in the number of cells with a high [Na]c. Inhibition of the apical Na/H exchanger (1 mmol L−1 amiloride) had little effect on basal Isc and the subsequent addition of theophylline increased Isc to a comparable extent as seen without amiloride. However, after amiloride treatment the only change in cellular composition was a reduction in the [Cl]c of both crypt and villus cells, suggesting that both regions are involved in the secretory response. These data suggest that the dominant response of the jejunum to secretagogues is an inhibition of Na absorption via Na/H exchange in the villi and the secretory response is distributed throughout the crypt/villus axis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Villus and Crypt Cell Composition in the Secreting Mouse Jejunum Measured with X-ray Microanalysis

Loading next page...
 
/lp/springer_journal/villus-and-crypt-cell-composition-in-the-secreting-mouse-jejunum-j7hoKG1kXh
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900338
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial