Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the electrolyte

Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the... The micron-level machining gap of wire electrochemical micromachining (WECMM) makes it difficult to remove the electro- lytic products, which always get deposited on the surface of the wire cathode. Usually, an acidic or alkaline solution is chosen as the electrolyte to reduce the insoluble electrolytic products during machining, but they are not environmentally friendly. To solve the problem, this paper proposed adding B C particles to a neutral NaNO electrolyte and machining microgrooves by vibration- 4 3 assisted WECMM. The effects of the B C particles on the deposition occurring on a wire cathode surface during machining and their role in reducing bubbles accumulation were discussed. Additionally, the effects of the amplitude, frequency of the wire cathode vibration, and particle concentration on the maximum feed rate and profiles of the microgrooves were examined. The experimental results show that adding B C particles not only significantly reduced the electrolytic products deposited on the surface of the wire cathode and prevented bubbles from accumulating in the machining gap but also improved the surface quality of the microgrooves. Based on the optimized parameters, to machine a 3-mm-thick stainless steel workpiece could have 3.5 μm/s of feed rate. Simultaneously, the typical array microgroove http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Vibration-assisted wire electrochemical micromachining with a suspension of B4C particles in the electrolyte

Loading next page...
 
/lp/springer_journal/vibration-assisted-wire-electrochemical-micromachining-with-a-SFdfS9e5OE
Publisher
Springer London
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-018-2190-8
Publisher site
See Article on Publisher Site

Abstract

The micron-level machining gap of wire electrochemical micromachining (WECMM) makes it difficult to remove the electro- lytic products, which always get deposited on the surface of the wire cathode. Usually, an acidic or alkaline solution is chosen as the electrolyte to reduce the insoluble electrolytic products during machining, but they are not environmentally friendly. To solve the problem, this paper proposed adding B C particles to a neutral NaNO electrolyte and machining microgrooves by vibration- 4 3 assisted WECMM. The effects of the B C particles on the deposition occurring on a wire cathode surface during machining and their role in reducing bubbles accumulation were discussed. Additionally, the effects of the amplitude, frequency of the wire cathode vibration, and particle concentration on the maximum feed rate and profiles of the microgrooves were examined. The experimental results show that adding B C particles not only significantly reduced the electrolytic products deposited on the surface of the wire cathode and prevented bubbles from accumulating in the machining gap but also improved the surface quality of the microgrooves. Based on the optimized parameters, to machine a 3-mm-thick stainless steel workpiece could have 3.5 μm/s of feed rate. Simultaneously, the typical array microgroove

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off