VFCVD diamond-coated cutting tools for micro-machining titanium alloy Ti6Al4V

VFCVD diamond-coated cutting tools for micro-machining titanium alloy Ti6Al4V Diamond-coated cutting tools are known to machine complex materials with many benefits associated with the generation of lower temperatures between contact surfaces. However, the complexity associated with machining exotic materials at the micro-scale eludes many researchers who study phenomena pertinent to the development of new processes for novel micro-structured materials. The study investigated the use of a Lagrangian-Eulerian-formulated finite element program to analyze chip formation and thermal effects when micro-machining Ti6Al4V titanium alloy used for medical device applications. For the simulated machining conditions described in this paper, chip formation occurred when F C/F T >1 and burr formation occurred when F C/F T <1. In addition to the force conditions, when the ratio of feed per tooth to tool edge radius is approximately unity (f tooth/t r ∼1), the micro-machining process forms chips. When the ratio is decreased to equal 0.5 (f tooth/t r = 0.5), chip formation and burr formation exists simultaneously. However, when the ratio approaches an approximate value of 0.3 (f tooth/t r ∼0.3), burr formation is dominant. The study also provides an insight into the thermal effects of micro-machining that shows how vertical filament chemical vapor deposition (VFCVD)-coated tools maintain the integrity of the surfaces of the material as a function of simulated machining parameters. In conclusion, the computational analysis is compared with practical micro-machining results reported in the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

VFCVD diamond-coated cutting tools for micro-machining titanium alloy Ti6Al4V

Loading next page...
Springer London
Copyright © 2017 by Springer-Verlag London
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial