Very Negative Potential for Half-inactivation of, and Effects of Anions on, Voltage-dependent Sodium Currents in Acutely Isolated Rat Olfactory Receptor Neurons

Very Negative Potential for Half-inactivation of, and Effects of Anions on, Voltage-dependent... Previous measurements with CsF pipette solutions using whole-cell patch-clamp techniques in dissociated rat olfactory receptor neurons (ORNs) indicated that the sodium currents had very negative inactivation characteristics with the implication that the cell resting potential must also normally have a very negative value. This study supports the conclusions that such an effect was real and not dependent on either the nature of the pipette anions or the recording situation previously used. For all pipette solutions, sodium currents showed a threshold activation ≈−80 mV and half-maximal activation voltages ≈−55 with half-inactivation potential ≤−100 mV, without being significantly affected by the replacement of F− by other pipette anions (H2PO− 4 and acetate−) or the addition of nucleotides and glutathione (which did cause a very slight positive shift). F−, followed by H2PO− 4 and to a much lesser extent by acetate−, was the most favorable pipette anion for obtaining good seals and whole-cell sodium currents in these extremely small ORNs. These results implied that resting potentials, for viable responsive cells, should be more negative than about −90 mV, as supported by the observation that action potentials could only be evoked from holding potentials more negative than −90 mV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Very Negative Potential for Half-inactivation of, and Effects of Anions on, Voltage-dependent Sodium Currents in Acutely Isolated Rat Olfactory Receptor Neurons

Loading next page...
 
/lp/springer_journal/very-negative-potential-for-half-inactivation-of-and-effects-of-anions-Zkx3PC63lt
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320001061
Publisher site
See Article on Publisher Site

Abstract

Previous measurements with CsF pipette solutions using whole-cell patch-clamp techniques in dissociated rat olfactory receptor neurons (ORNs) indicated that the sodium currents had very negative inactivation characteristics with the implication that the cell resting potential must also normally have a very negative value. This study supports the conclusions that such an effect was real and not dependent on either the nature of the pipette anions or the recording situation previously used. For all pipette solutions, sodium currents showed a threshold activation ≈−80 mV and half-maximal activation voltages ≈−55 with half-inactivation potential ≤−100 mV, without being significantly affected by the replacement of F− by other pipette anions (H2PO− 4 and acetate−) or the addition of nucleotides and glutathione (which did cause a very slight positive shift). F−, followed by H2PO− 4 and to a much lesser extent by acetate−, was the most favorable pipette anion for obtaining good seals and whole-cell sodium currents in these extremely small ORNs. These results implied that resting potentials, for viable responsive cells, should be more negative than about −90 mV, as supported by the observation that action potentials could only be evoked from holding potentials more negative than −90 mV.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 31, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off