Very high Reynolds number boundary layers over 3D sparse roughness and obstacles: the mean flow

Very high Reynolds number boundary layers over 3D sparse roughness and obstacles: the mean flow Hot-wire and oil-film interferometry measurements are taken for 3D rough wall boundary layers at very high Reynolds numbers (61,000 < Re θ < 120,000) with low blockage ratios, 10 < δ/H < 135, and high roughness, 100 < H + < 4,900. The results cover flows over both rough walls and over obstacles and are compared with and provide extension to recent lower Reynolds number results. The validity of the Townsend ‘wall similarity hypothesis’ in relation to consistently increasing 3D roughness is interrogated. In agreement with recent work, Schultz and Flack (J Fluid Mech 580:381–405, 2007) and Castro (J Fluid Mech 585:469–485, 2007) found that, for relatively low roughness, Townsend’s hypothesis holds for the mean velocity field. With increasing roughness, the equilibrium layer diminishes and gradually vanishes. The viscous component of the wall shear stress decreases, while the turbulent component increases as the roughness effects extend across the boundary layer. Experiments in Fluids Springer Journals

Very high Reynolds number boundary layers over 3D sparse roughness and obstacles: the mean flow

Loading next page...
Copyright © 2011 by Springer-Verlag
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial