Vernalization Response in Perennial Ryegrass (Lolium perenne L.) Involves Orthologues of Diploid Wheat (Triticum monococcum) VRN1 and Rice (Oryza sativa) Hd1

Vernalization Response in Perennial Ryegrass (Lolium perenne L.) Involves Orthologues of Diploid... Flowering time is important when adapting crop plants to different environments. While high feeding quality of forage grasses is facilitated by repression of flowering, flowering should also be inducible to facilitate grass seed production. Consequently, the identification and characterization of the genes controlling flowering time in forage grasses, including perennial ryegrass (Lolium perenne L.), is of great interest. In this study, three candidate genes for vernalization response genes in perennial ryegrass were identified based on DNA sequence homology to TmVRN1 and TmVRN2 of diploid wheat (Triticum monococcum), and Hd1 of rice (Oryza sativa). High sequence similarity between LpVRN1 and TmVRN1, co-localization of LpVRN1 with a major quantitative trait loci (QTL) for vernalization response in perennial ryegrass, synteny between map-positions of LpVRN1 and TmVRN1, mRNA expression analysis of LpVRN1 alleles during vernalization, and the correspondence between LpVRN1 mRNA expression levels and flowering time leads us to conclude that LpVRN1 is orthologous to TmVRN1 and that its function is conserved between diploid wheat and perennial ryegrass. Of the remaining two candidate genes, a putative Hd1 orthologue, LpCO, co-localized with a second QTL for vernlization response. LpCO has recently been shown to be involved in the photoperiodic regulation of flowering time. While epistasis, at the level of LpVRN1 transcription, was observed between the LpVRN1 and LpCO genomic regions, no differential expression of LpCO transcripts was observed during vernalization. While orthologous genes controlling flowering time can thus be identified, future allele sequencing efforts will reveal if causative polymorphisms are conserved across the grasses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Vernalization Response in Perennial Ryegrass (Lolium perenne L.) Involves Orthologues of Diploid Wheat (Triticum monococcum) VRN1 and Rice (Oryza sativa) Hd1

Loading next page...
 
/lp/springer_journal/vernalization-response-in-perennial-ryegrass-lolium-perenne-l-involves-MxhxlH6G3P
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-4815-1
Publisher site
See Article on Publisher Site

Abstract

Flowering time is important when adapting crop plants to different environments. While high feeding quality of forage grasses is facilitated by repression of flowering, flowering should also be inducible to facilitate grass seed production. Consequently, the identification and characterization of the genes controlling flowering time in forage grasses, including perennial ryegrass (Lolium perenne L.), is of great interest. In this study, three candidate genes for vernalization response genes in perennial ryegrass were identified based on DNA sequence homology to TmVRN1 and TmVRN2 of diploid wheat (Triticum monococcum), and Hd1 of rice (Oryza sativa). High sequence similarity between LpVRN1 and TmVRN1, co-localization of LpVRN1 with a major quantitative trait loci (QTL) for vernalization response in perennial ryegrass, synteny between map-positions of LpVRN1 and TmVRN1, mRNA expression analysis of LpVRN1 alleles during vernalization, and the correspondence between LpVRN1 mRNA expression levels and flowering time leads us to conclude that LpVRN1 is orthologous to TmVRN1 and that its function is conserved between diploid wheat and perennial ryegrass. Of the remaining two candidate genes, a putative Hd1 orthologue, LpCO, co-localized with a second QTL for vernlization response. LpCO has recently been shown to be involved in the photoperiodic regulation of flowering time. While epistasis, at the level of LpVRN1 transcription, was observed between the LpVRN1 and LpCO genomic regions, no differential expression of LpCO transcripts was observed during vernalization. While orthologous genes controlling flowering time can thus be identified, future allele sequencing efforts will reveal if causative polymorphisms are conserved across the grasses.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 7, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off