Verification of static signature pattern based on random subspace, REP tree and bagging

Verification of static signature pattern based on random subspace, REP tree and bagging In this paper we propose an effective method for static signature recognition from spontaneous handwritten text images. Our method relies on different aspects of writing: the presence of redundant patterns in the writing and its features. Signatures are analyzed at small fragments in which we seek to extract the patterns that an individual employs frequently as he writes. We exploit different features of writing like orientation, centroid and contour by computing a set of features from writing samples at different levels of observations. Orientation like intersecting point, edge point and gradient change of signature achieve great success in feature description. These features are extracted from the standard signature database and extracted features are trained and tested by machine learning (ML) approach. The machine learning approaches like Bagging, Random subspace (RS) and REP tree are used for classification purpose. Bagging with 10 iterations and base learner achieved efficiency upto 88 %. RS randomly selects features from feature set and creates new feature set. It uses decision tree as base classifier with different tree size. RS achieved efficiency same as Bagging but has more statistical errors. However, in case of REP tree we have achieved efficiency upto 75 %. The experimental results show that the Bagging and RS achieves promising results on publicly available data set. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Verification of static signature pattern based on random subspace, REP tree and bagging

Loading next page...
 
/lp/springer_journal/verification-of-static-signature-pattern-based-on-random-subspace-rep-ydBxv9090V
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4531-2
Publisher site
See Article on Publisher Site

Abstract

In this paper we propose an effective method for static signature recognition from spontaneous handwritten text images. Our method relies on different aspects of writing: the presence of redundant patterns in the writing and its features. Signatures are analyzed at small fragments in which we seek to extract the patterns that an individual employs frequently as he writes. We exploit different features of writing like orientation, centroid and contour by computing a set of features from writing samples at different levels of observations. Orientation like intersecting point, edge point and gradient change of signature achieve great success in feature description. These features are extracted from the standard signature database and extracted features are trained and tested by machine learning (ML) approach. The machine learning approaches like Bagging, Random subspace (RS) and REP tree are used for classification purpose. Bagging with 10 iterations and base learner achieved efficiency upto 88 %. RS randomly selects features from feature set and creates new feature set. It uses decision tree as base classifier with different tree size. RS achieved efficiency same as Bagging but has more statistical errors. However, in case of REP tree we have achieved efficiency upto 75 %. The experimental results show that the Bagging and RS achieves promising results on publicly available data set.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Mar 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off