Veratridine-Mediated Ca2+ Dynamics and Exocytosis in Paramecium Cells

Veratridine-Mediated Ca2+ Dynamics and Exocytosis in Paramecium Cells We analyzed [Ca2+] i transients in Paramecium cells in response to veratridine for which we had previously established an agonist effect for trichocyst exocytosis (Erxleben & Plattner, 1994. J. Cell Biol. 127:935–945; Plattner et al., 1994. J. Membrane Biol. 158:197–208). Wild-type cells (7S), nondischarge strain nd9–28°C and trichocyst-free strain ``trichless'' (tl), respectively, displayed similar, though somewhat diverging time course and plateau values of [Ca2+] i transients with moderate [Ca2+] o in the culture/assay fluid (50 μm or 1 mm). In 7S cells which are representative for a normal reaction, at [Ca2+] o = 30 nm (c.f. [Ca2+] rest i =∼50 to 100 nm), veratridine produced only a small cortical [Ca2+] i transient. This increased in size and spatial distribution at [Ca2+] o = 50 μm of 1 mm. Interestingly with unusually high yet nontoxic [Ca2+] o = 10 mm, [Ca2+] i transients were much delayed and also reduced, as is trichocyst exocytosis. We interpret our results as follows. (i) With [Ca2+] o = 30 nm, the restricted residual response observed is due to Ca2+ mobilization from subplasmalemmal stores. (ii) With moderate [Ca2+] o = 50 μm to 1 mm, the established membrane labilizing effect of veratridine may activate not only subplasmalemmal stores but also Ca2+ o influx from the medium via so far unidentified (anteriorly enriched) channels. Visibility of these phenomena is best in tl cells, where free docking sites allow for rapid Ca2+ spread, and least in 7S cells, whose perfectly assembled docking sites may ``consume'' a large part of the [Ca2+] i increase. (iii) With unusually high [Ca2+] o , mobilization of cortical stores and/or Ca2+ o influx may be impeded by the known membrane stabilizing effect of Ca2+ o counteracting the labilizing/channel activating effect of veratridine. (iv) We show these effects to be reversible, and, hence, not to be toxic side-effects, as confirmed by retention of injected calcein. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Veratridine-Mediated Ca2+ Dynamics and Exocytosis in Paramecium Cells

Loading next page...
 
/lp/springer_journal/veratridine-mediated-ca2-dynamics-and-exocytosis-in-paramecium-cells-X6auoyEdL7
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900527
Publisher site
See Article on Publisher Site

Abstract

We analyzed [Ca2+] i transients in Paramecium cells in response to veratridine for which we had previously established an agonist effect for trichocyst exocytosis (Erxleben & Plattner, 1994. J. Cell Biol. 127:935–945; Plattner et al., 1994. J. Membrane Biol. 158:197–208). Wild-type cells (7S), nondischarge strain nd9–28°C and trichocyst-free strain ``trichless'' (tl), respectively, displayed similar, though somewhat diverging time course and plateau values of [Ca2+] i transients with moderate [Ca2+] o in the culture/assay fluid (50 μm or 1 mm). In 7S cells which are representative for a normal reaction, at [Ca2+] o = 30 nm (c.f. [Ca2+] rest i =∼50 to 100 nm), veratridine produced only a small cortical [Ca2+] i transient. This increased in size and spatial distribution at [Ca2+] o = 50 μm of 1 mm. Interestingly with unusually high yet nontoxic [Ca2+] o = 10 mm, [Ca2+] i transients were much delayed and also reduced, as is trichocyst exocytosis. We interpret our results as follows. (i) With [Ca2+] o = 30 nm, the restricted residual response observed is due to Ca2+ mobilization from subplasmalemmal stores. (ii) With moderate [Ca2+] o = 50 μm to 1 mm, the established membrane labilizing effect of veratridine may activate not only subplasmalemmal stores but also Ca2+ o influx from the medium via so far unidentified (anteriorly enriched) channels. Visibility of these phenomena is best in tl cells, where free docking sites allow for rapid Ca2+ spread, and least in 7S cells, whose perfectly assembled docking sites may ``consume'' a large part of the [Ca2+] i increase. (iii) With unusually high [Ca2+] o , mobilization of cortical stores and/or Ca2+ o influx may be impeded by the known membrane stabilizing effect of Ca2+ o counteracting the labilizing/channel activating effect of veratridine. (iv) We show these effects to be reversible, and, hence, not to be toxic side-effects, as confirmed by retention of injected calcein.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off