Ventricular dyssynchrony assessment using ultra-high frequency ECG technique

Ventricular dyssynchrony assessment using ultra-high frequency ECG technique Purpose The aim of this proof-of-concept study is to intro- dyssynchrony distribution in resolution of milliseconds and duce new high-dynamic ECG technique with potential to de- correlate with strain rate results obtained by speckle tracking tect temporal-spatial distribution of ventricular electrical de- echocardiography. The effect of biventricular stimulation is polarization and to assess the level of ventricular demonstrated by the UHFQRS morphology and by the dyssynchrony. UHFDYS descriptor in selected examples. Methods 5-kHz 12-lead ECG data was collected. The ampli- Conclusions UHFQRS offers a new and simple technique for tude envelopes of the QRS were computed in an ultra-high assessing electrical activation patterns in ventricular frequency band of 500–1000 Hz and were averaged dyssynchrony with a temporal-spatial resolution that cannot (UHFQRS). UHFQRS V lead maps were compiled, and nu- be obtained by processing standard surface ECG. The main merical descriptor identifying ventricular dyssynchrony clinical potential of UHFQRS lies in the identification of dif- (UHFDYS) was detected. ferences in electrical activation among CRT candidates and detection of improvements in electrical synchrony in patients with biventricular pacing. Electronic supplementary material The online version of this article (doi:10.1007/s10840-017-0268-0) contains supplementary material, Keywords Ventricular dyssynchrony Cardiac which is available to authorized users. resynchronization http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Interventional Cardiac Electrophysiology Springer Journals
Loading next page...
 
/lp/springer_journal/ventricular-dyssynchrony-assessment-using-ultra-high-frequency-ecg-wXIbcuzPHc
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s)
Subject
Medicine & Public Health; Cardiology
ISSN
1383-875X
eISSN
1572-8595
D.O.I.
10.1007/s10840-017-0268-0
Publisher site
See Article on Publisher Site

Abstract

Purpose The aim of this proof-of-concept study is to intro- dyssynchrony distribution in resolution of milliseconds and duce new high-dynamic ECG technique with potential to de- correlate with strain rate results obtained by speckle tracking tect temporal-spatial distribution of ventricular electrical de- echocardiography. The effect of biventricular stimulation is polarization and to assess the level of ventricular demonstrated by the UHFQRS morphology and by the dyssynchrony. UHFDYS descriptor in selected examples. Methods 5-kHz 12-lead ECG data was collected. The ampli- Conclusions UHFQRS offers a new and simple technique for tude envelopes of the QRS were computed in an ultra-high assessing electrical activation patterns in ventricular frequency band of 500–1000 Hz and were averaged dyssynchrony with a temporal-spatial resolution that cannot (UHFQRS). UHFQRS V lead maps were compiled, and nu- be obtained by processing standard surface ECG. The main merical descriptor identifying ventricular dyssynchrony clinical potential of UHFQRS lies in the identification of dif- (UHFDYS) was detected. ferences in electrical activation among CRT candidates and detection of improvements in electrical synchrony in patients with biventricular pacing. Electronic supplementary material The online version of this article (doi:10.1007/s10840-017-0268-0) contains supplementary material, Keywords Ventricular dyssynchrony Cardiac which is available to authorized users. resynchronization

Journal

Journal of Interventional Cardiac ElectrophysiologySpringer Journals

Published: Jul 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off