Velocity profiles and interface instability in a two-phase fluid: investigations using ultrasonic velocity profiler

Velocity profiles and interface instability in a two-phase fluid: investigations using ultrasonic... In the present study the velocity profiles and the instability at the interface of a two phase water-oil fluid were investigated. The main aim of the research project was to investigate the instability mechanisms that can cause the failure of an oil spill barrier. Such mechanisms have been studied before for a vast variety of conditions (Wicks in Fluid dynamics of floating oil containment by mechanical barriers in the presence of water currents. In: Conference on prevention and control of oil spills, pp 55–106, 1969; Fannelop in Appl Ocean Res 5(2):80–92, 1983; Lee and Kang in Spill Sci Technol Bull 4(4):257–266, 1997; Fang and Johnston in J Waterway Port Coast Ocean Eng ASCE 127(4):234–239, 2001; among others). Although the velocity field in the region behind the barrier can influence the failure significantly, it had not been measured and analyzed precisely. In the present study the velocity profiles in the vicinity of different barriers were studied. To undertake the experiments, an oil layer was contained over the surface of flowing water by means of a barrier in a laboratory flume. The ultrasonic velocity profiler method was used to measure velocity profiles in each phase and to detect the oil–water interface. The effect of the barrier geometry on velocity profiles was studied. It was determined that the contained oil slick, although similar to a gravity current, can not be considered as a gravity current. The oil–water interface, derived from ultrasonic echo, was used to find the velocity profile in each fluid. Finally it was shown that the fluctuations at the rearward side of the oil slick head are due to Kelvin–Helmholtz instabilities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Velocity profiles and interface instability in a two-phase fluid: investigations using ultrasonic velocity profiler

Loading next page...
 
/lp/springer_journal/velocity-profiles-and-interface-instability-in-a-two-phase-fluid-ms8XrVKsxe
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0594-1
Publisher site
See Article on Publisher Site

Abstract

In the present study the velocity profiles and the instability at the interface of a two phase water-oil fluid were investigated. The main aim of the research project was to investigate the instability mechanisms that can cause the failure of an oil spill barrier. Such mechanisms have been studied before for a vast variety of conditions (Wicks in Fluid dynamics of floating oil containment by mechanical barriers in the presence of water currents. In: Conference on prevention and control of oil spills, pp 55–106, 1969; Fannelop in Appl Ocean Res 5(2):80–92, 1983; Lee and Kang in Spill Sci Technol Bull 4(4):257–266, 1997; Fang and Johnston in J Waterway Port Coast Ocean Eng ASCE 127(4):234–239, 2001; among others). Although the velocity field in the region behind the barrier can influence the failure significantly, it had not been measured and analyzed precisely. In the present study the velocity profiles in the vicinity of different barriers were studied. To undertake the experiments, an oil layer was contained over the surface of flowing water by means of a barrier in a laboratory flume. The ultrasonic velocity profiler method was used to measure velocity profiles in each phase and to detect the oil–water interface. The effect of the barrier geometry on velocity profiles was studied. It was determined that the contained oil slick, although similar to a gravity current, can not be considered as a gravity current. The oil–water interface, derived from ultrasonic echo, was used to find the velocity profile in each fluid. Finally it was shown that the fluctuations at the rearward side of the oil slick head are due to Kelvin–Helmholtz instabilities.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 2, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off