Velocity measurements of streamwise roll cells in rotating plane Couette flow

Velocity measurements of streamwise roll cells in rotating plane Couette flow For the first time, quantitative velocity measurements in rotating plane Couette flow are demonstrated. Particle image velocimetry is used at a low Reynolds number with anti-cyclonic, i.e. destabilising rotation, where the instability is expected to give rise to steady streamwise-oriented roll cells. The streamwise and spanwise velocities of the roll cells were measured on the centreplane of the flow and at two planes on either side. The streamwise velocity is spanwise periodic with an amplitude variation approximately ±42 % of half the velocity difference between the moving walls. The wall-normal velocity was estimated by assuming steady, laminar and streamwise-independent flow. Despite the large amplitude of the disturbance, both the spanwise wave length and amplitude ratio between the streamwise and wall-normal components were close to what is obtained from linear theory. A splitting event of a roll cell was also captured by the velocity measurements and its development followed in time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Velocity measurements of streamwise roll cells in rotating plane Couette flow

Loading next page...
 
/lp/springer_journal/velocity-measurements-of-streamwise-roll-cells-in-rotating-plane-DQ8Xyecl9m
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1617-0
Publisher site
See Article on Publisher Site

Abstract

For the first time, quantitative velocity measurements in rotating plane Couette flow are demonstrated. Particle image velocimetry is used at a low Reynolds number with anti-cyclonic, i.e. destabilising rotation, where the instability is expected to give rise to steady streamwise-oriented roll cells. The streamwise and spanwise velocities of the roll cells were measured on the centreplane of the flow and at two planes on either side. The streamwise velocity is spanwise periodic with an amplitude variation approximately ±42 % of half the velocity difference between the moving walls. The wall-normal velocity was estimated by assuming steady, laminar and streamwise-independent flow. Despite the large amplitude of the disturbance, both the spanwise wave length and amplitude ratio between the streamwise and wall-normal components were close to what is obtained from linear theory. A splitting event of a roll cell was also captured by the velocity measurements and its development followed in time.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 20, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off