Velocity measurements in a precessing jet flow using a three dimensional LDA system

Velocity measurements in a precessing jet flow using a three dimensional LDA system  The turbulent, three dimensional and time dependent flow field of a precessing jet is investigated. In the present case the jet precession is generated by mechanically rotating a round jet inclined relative to the axis of rotation. A conditional flow visualisation technique is used to complement three dimensional laser Doppler velocity data, time-averaged and phase-averaged at the frequency of precession. The conditional phase-averaging technique enables phase-averaged velocity contours and vectors to be obtained which reveal flow patterns and structures within the flow field. Time-averaging of the velocity data shows that these structures are significant in that they generate a reverse flow (recirculation) region between the jet and its spinning axis. They are found also to cause a rapid decay of the mean velocity. The characteristics of the precessing jet found here are compared with previous investigations of the same flow and with investigations of other turbulent jets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Velocity measurements in a precessing jet flow using a three dimensional LDA system

Loading next page...
 
/lp/springer_journal/velocity-measurements-in-a-precessing-jet-flow-using-a-three-G9ArAoREzj
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050089
Publisher site
See Article on Publisher Site

Abstract

 The turbulent, three dimensional and time dependent flow field of a precessing jet is investigated. In the present case the jet precession is generated by mechanically rotating a round jet inclined relative to the axis of rotation. A conditional flow visualisation technique is used to complement three dimensional laser Doppler velocity data, time-averaged and phase-averaged at the frequency of precession. The conditional phase-averaging technique enables phase-averaged velocity contours and vectors to be obtained which reveal flow patterns and structures within the flow field. Time-averaging of the velocity data shows that these structures are significant in that they generate a reverse flow (recirculation) region between the jet and its spinning axis. They are found also to cause a rapid decay of the mean velocity. The characteristics of the precessing jet found here are compared with previous investigations of the same flow and with investigations of other turbulent jets.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 13, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off