Velocity and Reynolds stresses in a precessing jet flow

Velocity and Reynolds stresses in a precessing jet flow A novel fluid mixing device, described elsewhere, has been shown to have a dramatic effect on the combustion characteristics of a fuel jet. The main features of the flow are the deflection of the jet between 30° and 60° from the nozzle axis and its precession about that axis. Many of the factors governing the nozzle instabilities which drive the mixing in the external field are imprecisely defined. It is the aim of the present paper to examine, in isolation from the nozzle instabilities, the influence of precession on a deflected jet as it proceeds downstream from the nozzle exit. The fluid dynamically driven phenomena within the nozzle which cause the precession are in the present investigation replaced by a mechanical rotation of a nozzle from which is emerging a jet which is orientated at an angle from the nozzle axis. By this means the effect of precession on the deflected jet can be investigated independently of the phenomena which cause the precession. The experimental data reported here has been obtained from measurements made using a miniature, rapid response four-hole “Cobra” pitot probe in the field of the precessing jet. Phase-averaged three dimensional velocity components identify the large scale motions and overall flow patterns. The measured Reynolds stresses complement the velocity data and are found to be compatible with the higher entrainment rates of the jet found in earlier investigations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Velocity and Reynolds stresses in a precessing jet flow

Loading next page...
 
/lp/springer_journal/velocity-and-reynolds-stresses-in-a-precessing-jet-flow-Vd5wULML45
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluids; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050076
Publisher site
See Article on Publisher Site

Abstract

A novel fluid mixing device, described elsewhere, has been shown to have a dramatic effect on the combustion characteristics of a fuel jet. The main features of the flow are the deflection of the jet between 30° and 60° from the nozzle axis and its precession about that axis. Many of the factors governing the nozzle instabilities which drive the mixing in the external field are imprecisely defined. It is the aim of the present paper to examine, in isolation from the nozzle instabilities, the influence of precession on a deflected jet as it proceeds downstream from the nozzle exit. The fluid dynamically driven phenomena within the nozzle which cause the precession are in the present investigation replaced by a mechanical rotation of a nozzle from which is emerging a jet which is orientated at an angle from the nozzle axis. By this means the effect of precession on the deflected jet can be investigated independently of the phenomena which cause the precession. The experimental data reported here has been obtained from measurements made using a miniature, rapid response four-hole “Cobra” pitot probe in the field of the precessing jet. Phase-averaged three dimensional velocity components identify the large scale motions and overall flow patterns. The measured Reynolds stresses complement the velocity data and are found to be compatible with the higher entrainment rates of the jet found in earlier investigations.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 19, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off