Vector systems of RNA interference

Vector systems of RNA interference RNA interference is a mechanism of posttranslational (at the level of mRNA) gene silencing. Sequence-specific mRNA degradation is realized with the help of small interfering RNAs produced by processing of a precursor using Dicer, an enzyme from the RNAse III family. This mechanism is now widely used in vitro on cultures of mammalian cells in order to elucidate functions of individual genes by gene specific knockdown. Analogs of small interference RNAs are intensely expressed during embryogenesis. The mechanism of RNA interference plays an especially important role in embryogenesis of invertebrates. Identification of the functions of small noncoding RNAs is essential for understanding the genetic mechanisms underlying individual developmental stages. In order to integrate small interference RNAs in mammalian cells, various systems have been developed that allow both transient (for 48 h) and stable expression in vitro. These systems are considered in the present review. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Vector systems of RNA interference

Loading next page...
 
/lp/springer_journal/vector-systems-of-rna-interference-vfBLsNaaKV
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360406030015
Publisher site
See Article on Publisher Site

Abstract

RNA interference is a mechanism of posttranslational (at the level of mRNA) gene silencing. Sequence-specific mRNA degradation is realized with the help of small interfering RNAs produced by processing of a precursor using Dicer, an enzyme from the RNAse III family. This mechanism is now widely used in vitro on cultures of mammalian cells in order to elucidate functions of individual genes by gene specific knockdown. Analogs of small interference RNAs are intensely expressed during embryogenesis. The mechanism of RNA interference plays an especially important role in embryogenesis of invertebrates. Identification of the functions of small noncoding RNAs is essential for understanding the genetic mechanisms underlying individual developmental stages. In order to integrate small interference RNAs in mammalian cells, various systems have been developed that allow both transient (for 48 h) and stable expression in vitro. These systems are considered in the present review.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: May 18, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off