Vasopressin Regulates Water Flow in a Rat Cortical Collecting Duct Cell Line Not Containing Known Aquaporins

Vasopressin Regulates Water Flow in a Rat Cortical Collecting Duct Cell Line Not Containing Known... Transepithelial water movements and arginine-vasopressin (AVP)-associated ones were studied in a renal cell line established from a rat cortical collecting duct (RCCD1). Transepithelial net water fluxes (J w ) were recorded every minute in RCCD1 monolayers cultured on permeable supports. Spontaneous net water secretion was observed, which was inhibited by serosal bumetanide (10−5 m), apical glibenclamide (10−4 m) and apical BaCl2 (5 × 10−3 m). RT-PCR, RNAse protection and/or immunoblotting experiments demonstrated that known renal aquaporins (AQP1, AQP2, AQP3, AQP4, AQP6 and AQP7) were not expressed in RCCD1 cells. AVP stimulates cAMP production and sodium reabsorption in RCCD1 cells. We have now observed that AVP significantly reduces the spontaneous water secretory flux. The amiloride-sensitive AVP-induced increase in short-circuit current (I sc ) was paralleled by a simultaneous modification of the observed J w : both responses had similar time courses and half-times (about 4 min). On the other hand, AVP did not modify the osmotically driven J w induced by serosal hypertonicity. We can conclude that: (i) transepithelial J w occurs in RCCD1 cells in the absence of known renal aquaporins; (ii) the ``water secretory component'' observed could be linked to Cl− and K+ secretion; (iii) the natriferic response to AVP, preserved in RCCD1 cells, was associated with a change in net water flux, which was even observed in absence of AQP2, AQP3 or AQP4 and (iv) the hydro-osmotic response to AVP was completely lost. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Vasopressin Regulates Water Flow in a Rat Cortical Collecting Duct Cell Line Not Containing Known Aquaporins

Loading next page...
 
/lp/springer_journal/vasopressin-regulates-water-flow-in-a-rat-cortical-collecting-duct-RyTF020uFm
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320010037
Publisher site
See Article on Publisher Site

Abstract

Transepithelial water movements and arginine-vasopressin (AVP)-associated ones were studied in a renal cell line established from a rat cortical collecting duct (RCCD1). Transepithelial net water fluxes (J w ) were recorded every minute in RCCD1 monolayers cultured on permeable supports. Spontaneous net water secretion was observed, which was inhibited by serosal bumetanide (10−5 m), apical glibenclamide (10−4 m) and apical BaCl2 (5 × 10−3 m). RT-PCR, RNAse protection and/or immunoblotting experiments demonstrated that known renal aquaporins (AQP1, AQP2, AQP3, AQP4, AQP6 and AQP7) were not expressed in RCCD1 cells. AVP stimulates cAMP production and sodium reabsorption in RCCD1 cells. We have now observed that AVP significantly reduces the spontaneous water secretory flux. The amiloride-sensitive AVP-induced increase in short-circuit current (I sc ) was paralleled by a simultaneous modification of the observed J w : both responses had similar time courses and half-times (about 4 min). On the other hand, AVP did not modify the osmotically driven J w induced by serosal hypertonicity. We can conclude that: (i) transepithelial J w occurs in RCCD1 cells in the absence of known renal aquaporins; (ii) the ``water secretory component'' observed could be linked to Cl− and K+ secretion; (iii) the natriferic response to AVP, preserved in RCCD1 cells, was associated with a change in net water flux, which was even observed in absence of AQP2, AQP3 or AQP4 and (iv) the hydro-osmotic response to AVP was completely lost.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off