Access the full text.
Sign up today, get DeepDyve free for 14 days.
Edward R Fadell, Paul H Rabinowitz (1978)
Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systemsInvent. Math., 45
Paul H Rabinowitz (1978)
Some critical point theorems and applications to semilinear elliptic partial differential equationsAnn. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5
S Mosconi, K Perera, M Squassina, Y Yang (2016)
The Brezis–Nirenberg problem for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-LaplacianCalc. Var. Partial Differ. Equ., 55
K Perera, RP Agarwal, D O’Regan (2010)
10.1090/surv/161Morse Theoretic Aspects of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian Type Operators
Kanishka Perera (2003)
Nontrivial critical groups in p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian problems via the Yang indexTopol. Methods Nonlinear Anal., 21
Marco Degiovanni, Sergio Lancelotti (2007)
Linking over cones and nontrivial solutions for p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplace equations with p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-superlinear nonlinearityAnn. Inst. H. Poincaré Anal. Non Linéaire, 24
Kanishka Perera, Marco Squassina, Yang Yang (2016)
Bifurcation and multiplicity results for critical p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian problemsTopol. Methods Nonlinear Anal., 47
N Ghoussoub, C Yuan (2000)
Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponentsTrans. Am. Math. Soc., 352
P Bartolo, V Benci, D Fortunato (1983)
Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinityNonlinear Anal., 7
Vieri Benci (1982)
On critical point theory for indefinite functionals in the presence of symmetriesTrans. Am. Math. Soc., 274
Marco Degiovanni, Sergio Lancelotti (2009)
Linking solutions for p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplace equations with nonlinearity at critical growthJ. Funct. Anal., 256
Kanishka Perera, Andrzej Szulkin (2005)
p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian problems where the nonlinearity crosses an eigenvalueDiscrete Contin. Dyn. Syst., 13
We prove existence, multiplicity, and bifurcation results for p-Laplacian problems involving critical Hardy–Sobolev exponents. Our results are mainly for the case λ≥λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda \ge \lambda _1$$\end{document} and extend results in the literature for 0<λ<λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0< \lambda < \lambda _1$$\end{document}. In the absence of a direct sum decomposition, we use critical point theorems based on a cohomological index and a related pseudo-index.
Nonlinear Differential Equations and Applications NoDEA – Springer Journals
Published: Jun 1, 2018
Keywords: p-Laplacian problems; Critical Hardy–Sobolev exponents; Existence; Multiplicity; Bifurcation; Critical point theory; Cohomological index; Pseudo-index; Primary 35J92; 35B33; Secondary 35J20
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.