Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{am ...

p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts}... We prove existence, multiplicity, and bifurcation results for p-Laplacian problems involving critical Hardy–Sobolev exponents. Our results are mainly for the case λ≥λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda \ge \lambda _1$$\end{document} and extend results in the literature for 0<λ<λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0< \lambda < \lambda _1$$\end{document}. In the absence of a direct sum decomposition, we use critical point theorems based on a cohomological index and a related pseudo-index. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Differential Equations and Applications NoDEA Springer Journals

p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{am ...

Loading next page...
 
/lp/springer_journal/varvec-p-p-laplacian-problems-involving-critical-hardy-sobolev-UKG1XSAFwr

References (12)

Publisher
Springer Journals
Copyright
Copyright © Springer International Publishing AG, part of Springer Nature 2018
Subject
Mathematics; Analysis
ISSN
1021-9722
eISSN
1420-9004
DOI
10.1007/s00030-018-0517-7
Publisher site
See Article on Publisher Site

Abstract

We prove existence, multiplicity, and bifurcation results for p-Laplacian problems involving critical Hardy–Sobolev exponents. Our results are mainly for the case λ≥λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda \ge \lambda _1$$\end{document} and extend results in the literature for 0<λ<λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0< \lambda < \lambda _1$$\end{document}. In the absence of a direct sum decomposition, we use critical point theorems based on a cohomological index and a related pseudo-index.

Journal

Nonlinear Differential Equations and Applications NoDEASpringer Journals

Published: Jun 1, 2018

Keywords: p-Laplacian problems; Critical Hardy–Sobolev exponents; Existence; Multiplicity; Bifurcation; Critical point theory; Cohomological index; Pseudo-index; Primary 35J92; 35B33; Secondary 35J20

There are no references for this article.