Variations of planum temporale asymmetries with Heschl’s Gyri duplications and association with cognitive abilities: MRI investigation of 428 healthy volunteers

Variations of planum temporale asymmetries with Heschl’s Gyri duplications and association with... In a large sample of 428 healthy adults balanced for gender and manual preference (MP), we investigated planum temporale (PT) surface area variability in relation with Heschl’s gyrus (HG) duplication pattern, MP, and familial sinistrality (FS), considering different PT definitions. In a sub-sample of 362 participants, we also investigated whether variability of PT asymmetry was associated with differences in verbal abilities. On each participant brain hemisphere MRI, we delineated a posterior PT area (PTpost), excluding the second Heschl gyrus in case of either complete posterior duplication (CPD) or common stem partial duplication (CSD). We then defined a total PT area (PTtot) as the union of PTpost and of the second HG when present, and a HGPT area as the union of PTtot and of the first HG. The HG duplication pattern of one hemisphere was found to significantly affect the PTpost surface area of the same hemisphere, a larger reduction being present in case of CPD than in case of CSD, leading to a strong impact of both left and right HG duplication patterns on PTpost asymmetry. The HG duplication pattern had no effect on PTtot surface areas, while a significant effect of the left HG duplication was present on PTtot asymmetry that was larger in case of a CSD as compared to a single HG. By contrast, the type of HG duplication did not affect HGPT and neither left nor right HG duplication pattern had an effect on HGPT asymmetry. Meanwhile, MP had no effect on PTpost, PTtot, HGPT, or their asymmetries. The absence of a left PTpost was associated with existence of FS (FS+) (7FS+ among nine without PTpost). Removing the nine individuals lacking PTpost, a lower left PTpost surface area was observed in FS+ participants with left CPD. In the sub-sample of 362 participants, we observed a significant interaction between PTpost asymmetry and cognitive abilities due to poorer lexical performances in individuals having a symmetric PTpost as compared to individuals having either a leftward or a rightward asymmetric PTpost. By contrast, there was no significant effect of PTtot or HGPT asymmetry on cognitive abilities. This study shows that HG duplication pattern mainly affects the surface area of the most posterior part of PT and its asymmetry, this PTpost area being specifically associated with variability in verbal performances. This study also shows, for the first time, an association between decreased performances and lack of PTpost anatomical asymmetry, being rightward asymmetrical having no deleterious effect on verbal abilities, thereby supporting the idea that anatomical lateralization is necessary for optimal verbal performances. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Structure and Function Springer Journals

Variations of planum temporale asymmetries with Heschl’s Gyri duplications and association with cognitive abilities: MRI investigation of 428 healthy volunteers

Loading next page...
 
/lp/springer_journal/variations-of-planum-temporale-asymmetries-with-heschl-s-gyri-gIunWPWwe8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Neurosciences; Cell Biology; Neurology
ISSN
1863-2653
eISSN
1863-2661
D.O.I.
10.1007/s00429-017-1367-5
Publisher site
See Article on Publisher Site

Abstract

In a large sample of 428 healthy adults balanced for gender and manual preference (MP), we investigated planum temporale (PT) surface area variability in relation with Heschl’s gyrus (HG) duplication pattern, MP, and familial sinistrality (FS), considering different PT definitions. In a sub-sample of 362 participants, we also investigated whether variability of PT asymmetry was associated with differences in verbal abilities. On each participant brain hemisphere MRI, we delineated a posterior PT area (PTpost), excluding the second Heschl gyrus in case of either complete posterior duplication (CPD) or common stem partial duplication (CSD). We then defined a total PT area (PTtot) as the union of PTpost and of the second HG when present, and a HGPT area as the union of PTtot and of the first HG. The HG duplication pattern of one hemisphere was found to significantly affect the PTpost surface area of the same hemisphere, a larger reduction being present in case of CPD than in case of CSD, leading to a strong impact of both left and right HG duplication patterns on PTpost asymmetry. The HG duplication pattern had no effect on PTtot surface areas, while a significant effect of the left HG duplication was present on PTtot asymmetry that was larger in case of a CSD as compared to a single HG. By contrast, the type of HG duplication did not affect HGPT and neither left nor right HG duplication pattern had an effect on HGPT asymmetry. Meanwhile, MP had no effect on PTpost, PTtot, HGPT, or their asymmetries. The absence of a left PTpost was associated with existence of FS (FS+) (7FS+ among nine without PTpost). Removing the nine individuals lacking PTpost, a lower left PTpost surface area was observed in FS+ participants with left CPD. In the sub-sample of 362 participants, we observed a significant interaction between PTpost asymmetry and cognitive abilities due to poorer lexical performances in individuals having a symmetric PTpost as compared to individuals having either a leftward or a rightward asymmetric PTpost. By contrast, there was no significant effect of PTtot or HGPT asymmetry on cognitive abilities. This study shows that HG duplication pattern mainly affects the surface area of the most posterior part of PT and its asymmetry, this PTpost area being specifically associated with variability in verbal performances. This study also shows, for the first time, an association between decreased performances and lack of PTpost anatomical asymmetry, being rightward asymmetrical having no deleterious effect on verbal abilities, thereby supporting the idea that anatomical lateralization is necessary for optimal verbal performances.

Journal

Brain Structure and FunctionSpringer Journals

Published: Feb 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off