Variations of Intracellular pH in Human Erythrocytes via K+(Na+)/H+ Exchange Under Low Ionic Strength Conditions

Variations of Intracellular pH in Human Erythrocytes via K+(Na+)/H+ Exchange Under Low Ionic... The change of intracellular pH of erythrocytes under different experimental conditions was investigated using the pH-sensitive fluorescent dye BCECF and correlated with (ouabain + bumetanide + EGTA)-insensitive K+ efflux and Cl− loss. When human erythrocytes were suspended in a physiological NaCl solution (pH o = 7.4), the measured pH i was 7.19 ± 0.04 and remained constant for 30 min. When erythrocytes were transferred into a low ionic strength (LIS) solution, an immediate alkalinization increased the pH i to 7.70 ± 0.15, which was followed by a slower cell acidification. The alkalinization of cells in LIS media was ascribed to a band 3 mediated effect since a rapid loss of approximately 80% of intracellular Cl− content was observed, which was sensitive to known anion transport inhibitors. In the case of cellular acidification, a comparison of the calculated H+ influx with the measured unidirectional K+ efflux at different extracellular ionic strengths showed a correlation with a nearly 1:1 stoichiometry. Both fluxes were enhanced by decreasing the ionic strength of the solution resulting in a H+ influx and a K+ efflux in LIS solution of 108.2 ± 20.4 mmol (l cells hr)−1 and 98.7 ± 19.3 mmol (l cells hr)−1, respectively. For bovine and porcine erythrocytes, in LIS media, H+ influx and K+ efflux were of comparable magnitude, but only about 10% of the fluxes observed in human erythrocytes under LIS conditions. Quinacrine, a known inhibitor of the mitochondrial K+(Na+)/H+ exchanger, inhibited the K+ efflux in LIS solution by about 80%. Our results provide evidence for the existence of a K+(Na+)/H+ exchanger in the human erythrocyte membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Variations of Intracellular pH in Human Erythrocytes via K+(Na+)/H+ Exchange Under Low Ionic Strength Conditions

Loading next page...
 
/lp/springer_journal/variations-of-intracellular-ph-in-human-erythrocytes-via-k-na-h-9bWYwhjjou
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232001089
Publisher site
See Article on Publisher Site

Abstract

The change of intracellular pH of erythrocytes under different experimental conditions was investigated using the pH-sensitive fluorescent dye BCECF and correlated with (ouabain + bumetanide + EGTA)-insensitive K+ efflux and Cl− loss. When human erythrocytes were suspended in a physiological NaCl solution (pH o = 7.4), the measured pH i was 7.19 ± 0.04 and remained constant for 30 min. When erythrocytes were transferred into a low ionic strength (LIS) solution, an immediate alkalinization increased the pH i to 7.70 ± 0.15, which was followed by a slower cell acidification. The alkalinization of cells in LIS media was ascribed to a band 3 mediated effect since a rapid loss of approximately 80% of intracellular Cl− content was observed, which was sensitive to known anion transport inhibitors. In the case of cellular acidification, a comparison of the calculated H+ influx with the measured unidirectional K+ efflux at different extracellular ionic strengths showed a correlation with a nearly 1:1 stoichiometry. Both fluxes were enhanced by decreasing the ionic strength of the solution resulting in a H+ influx and a K+ efflux in LIS solution of 108.2 ± 20.4 mmol (l cells hr)−1 and 98.7 ± 19.3 mmol (l cells hr)−1, respectively. For bovine and porcine erythrocytes, in LIS media, H+ influx and K+ efflux were of comparable magnitude, but only about 10% of the fluxes observed in human erythrocytes under LIS conditions. Quinacrine, a known inhibitor of the mitochondrial K+(Na+)/H+ exchanger, inhibited the K+ efflux in LIS solution by about 80%. Our results provide evidence for the existence of a K+(Na+)/H+ exchanger in the human erythrocyte membrane.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Aug 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off