Variations of eye size parameters among different strains of mice

Variations of eye size parameters among different strains of mice In the mouse, only a few genes have been definitively associated with a small-eye phenotype; the paired-box gene Pax6 and the gene coding for the microphthalmia-associated transcription factor (Mitf). Mutant alleles were recovered by crude phenotype screens and their effects on eye size are relatively large. This feature points to a bias during screening for eye-size mutants, selecting preferentially more severe phenotypes. An unbiased method determining eye-size parameters in an observer-independent, quantitative manner is expected to pick up variations in other genes, which will be confirmed as pathologic mutations in confirmation crosses. The present study used optical low coherent interferometry (OLCI) to compare the axial eye length, the cornea and lens thicknesses, and the anterior chamber depth in four common wild-type, laboratory inbred strains (C57BL/6J, C3HeB/FeJ, 129S2/SvPasCrl, and BALB/cByJ) between 4 and 15 weeks of age. There were no differences between left and right eyes; differences between the size parameters of males and females have been observed only in a few cases. An optimal screening age for OLCI measurements was defined as 11 weeks of age. At this age, we checked two other inbred strains (AKR/J and DBA/2NCrl) as well as CD-1 outbred mice. CD-1 mice have the largest axial length. The most impressive differences among inbred strains were, first, the anterior chamber depth, where the DBA mice have significantly lower values than the other strains. Second, the cornea in C3H mice is approximately 20% thicker than in the other inbred strains. Finally, wild-type intervals (mean ± 3 SD) for axial length, anterior chamber depth, and cornea and lens thicknesses were calculated allowing a quick identification of pathologic outliers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Variations of eye size parameters among different strains of mice

Loading next page...
 
/lp/springer_journal/variations-of-eye-size-parameters-among-different-strains-of-mice-kxe7w02gFu
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-006-0019-5
Publisher site
See Article on Publisher Site

Abstract

In the mouse, only a few genes have been definitively associated with a small-eye phenotype; the paired-box gene Pax6 and the gene coding for the microphthalmia-associated transcription factor (Mitf). Mutant alleles were recovered by crude phenotype screens and their effects on eye size are relatively large. This feature points to a bias during screening for eye-size mutants, selecting preferentially more severe phenotypes. An unbiased method determining eye-size parameters in an observer-independent, quantitative manner is expected to pick up variations in other genes, which will be confirmed as pathologic mutations in confirmation crosses. The present study used optical low coherent interferometry (OLCI) to compare the axial eye length, the cornea and lens thicknesses, and the anterior chamber depth in four common wild-type, laboratory inbred strains (C57BL/6J, C3HeB/FeJ, 129S2/SvPasCrl, and BALB/cByJ) between 4 and 15 weeks of age. There were no differences between left and right eyes; differences between the size parameters of males and females have been observed only in a few cases. An optimal screening age for OLCI measurements was defined as 11 weeks of age. At this age, we checked two other inbred strains (AKR/J and DBA/2NCrl) as well as CD-1 outbred mice. CD-1 mice have the largest axial length. The most impressive differences among inbred strains were, first, the anterior chamber depth, where the DBA mice have significantly lower values than the other strains. Second, the cornea in C3H mice is approximately 20% thicker than in the other inbred strains. Finally, wild-type intervals (mean ± 3 SD) for axial length, anterior chamber depth, and cornea and lens thicknesses were calculated allowing a quick identification of pathologic outliers.

Journal

Mammalian GenomeSpringer Journals

Published: Aug 4, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off