Variation of leaf traits and pigment content in three species of steppe plants depending on the climate aridity

Variation of leaf traits and pigment content in three species of steppe plants depending on the... Mesophyll structure and content of photosynthetic pigments in the leaves of three species of steppe plants, Centaurea scabiosa L., Euphorbia virgata Waldst. et Kit., Helichrysum arenarium (L.) Moench, were investigated in four geographical sites of the Volga region and the Urals located in the forest-steppe and steppe zones. Variations of the studied parameters between geographical points depended both on the species and on the structural organization of the leaf. The highest level of variation was observed for leaf area and pigment content per unit leaf area, the size and the number of chloroplasts in the cell changed to a lesser extent. The leaf thickness, leaf area and mesophyll cell sizes mostly depended on the plant species. C. scabiosa had large leaves (40–50 cm2) with large thickness (280–290 μm) and large mesophyll cells (up to 15000 μm3). The leaves of H. arenarium and E. virgata were ten times smaller and characterized by 1.5 times smaller thickness and 2−3 times smaller cell size. Geographical location and climate of the region affected leaf density, proportion of partial tissue volume, and the ratio of the photosynthetic pigments. In the southern point of Volga region with the highest climate aridity, all studied species were characterized by maximum values of volumetric leaf density (LD), due to the high proportion of sclerenchyma and vascular bundles, and specificity of the mesophyll structure. With the decline in latitude, chlorophyll (Chl) and carotenoid (Car) contents in leaf area were reduced, the ratio Chl/Car was increased, and the ratio Chl a/b was declined. The reduction of the pigment content in the leaf in all species was associated with a reduction in the amount of Chl per chloroplast, and for C. scabiosa and H. arenarium it was associated also with the reduction of chloroplast amount in the leaf area. In turn, chloroplast number per leaf area and the total cell area (Ames/A) depended on the ratio of the number and size of mesophyll cells inherent to this plant species. At the same time, we found a similar mechanism of spatial organization of leaf restructuring for all studied species—decrease in Ames/A was accompanied by increasing in the proportion of intercellular air spaces in the leaf. It is concluded that variations in structural and functional parameters of the photosynthetic apparatus of steppe plants were associated with plant adaptation to climate features. General direction of the changes of leaf parameters of the studied species with aridity was the increase of LD and the decrease of pigment content per leaf area however the cellular mechanisms of changes in the pigment content and integral parameters of mesophyll were determined by the plant species properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Variation of leaf traits and pigment content in three species of steppe plants depending on the climate aridity

Loading next page...
 
/lp/springer_journal/variation-of-leaf-traits-and-pigment-content-in-three-species-of-IxtOES4Lv0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717020145
Publisher site
See Article on Publisher Site

Abstract

Mesophyll structure and content of photosynthetic pigments in the leaves of three species of steppe plants, Centaurea scabiosa L., Euphorbia virgata Waldst. et Kit., Helichrysum arenarium (L.) Moench, were investigated in four geographical sites of the Volga region and the Urals located in the forest-steppe and steppe zones. Variations of the studied parameters between geographical points depended both on the species and on the structural organization of the leaf. The highest level of variation was observed for leaf area and pigment content per unit leaf area, the size and the number of chloroplasts in the cell changed to a lesser extent. The leaf thickness, leaf area and mesophyll cell sizes mostly depended on the plant species. C. scabiosa had large leaves (40–50 cm2) with large thickness (280–290 μm) and large mesophyll cells (up to 15000 μm3). The leaves of H. arenarium and E. virgata were ten times smaller and characterized by 1.5 times smaller thickness and 2−3 times smaller cell size. Geographical location and climate of the region affected leaf density, proportion of partial tissue volume, and the ratio of the photosynthetic pigments. In the southern point of Volga region with the highest climate aridity, all studied species were characterized by maximum values of volumetric leaf density (LD), due to the high proportion of sclerenchyma and vascular bundles, and specificity of the mesophyll structure. With the decline in latitude, chlorophyll (Chl) and carotenoid (Car) contents in leaf area were reduced, the ratio Chl/Car was increased, and the ratio Chl a/b was declined. The reduction of the pigment content in the leaf in all species was associated with a reduction in the amount of Chl per chloroplast, and for C. scabiosa and H. arenarium it was associated also with the reduction of chloroplast amount in the leaf area. In turn, chloroplast number per leaf area and the total cell area (Ames/A) depended on the ratio of the number and size of mesophyll cells inherent to this plant species. At the same time, we found a similar mechanism of spatial organization of leaf restructuring for all studied species—decrease in Ames/A was accompanied by increasing in the proportion of intercellular air spaces in the leaf. It is concluded that variations in structural and functional parameters of the photosynthetic apparatus of steppe plants were associated with plant adaptation to climate features. General direction of the changes of leaf parameters of the studied species with aridity was the increase of LD and the decrease of pigment content per leaf area however the cellular mechanisms of changes in the pigment content and integral parameters of mesophyll were determined by the plant species properties.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off