Variable-rate lime application in Louisiana sugarcane production systems

Variable-rate lime application in Louisiana sugarcane production systems Precision agriculture may offer sugarcane growers a management system that decreases costs and maximizes profits, while minimizing any potential negative environmental impact. The utility of variable-rate (VR) lime application in the initial production year (plant cane) of a 3-year sugarcane crop cycle was investigated at three locations planted to the cultivar LCP 85–384 for a total of nine site-years. A conventional, uniform-rate (UR) lime application method was compared to a VR application method and a no-lime control. Prior to lime application, soil samples (0–200 mm) were taken on a 0.4 ha grid to produce VR application maps. Soil samples were also taken after each crop of the 3-year production cycle to determine effects of lime application on soil properties. The combined results showed that neither the UR nor VR lime application method consistently improved cane or sugar yields over the no-lime control. Cane and sugar yields at Naquin Farms (NF) were increased with both the UR and VR methods, with the UR method having a slight advantage. At St. Louis Plantation (SLP), only the VR method in the first-ratoon crop increased cane and sugar yields and there were no yield differences due to lime application at Ellendale Plantation (EP). At NF and SLP, application of lime in the plant-cane crop increased soil pH and available phosphorus over the 3-year production cycle. At EP, lime application did not influence any of the soil properties measured. The failure to get a yield response from lime application at SLP and EP may have been due to the fact that fertility levels at planting were already greater than those at NF and the nitrogen fertilizer rates used by the grower at EP were higher than those at either SLP or NF. This may have obscured any positive yield effects that would be realized from increased nutrient availability. It is also possible that multiple VR lime applications will be required over a number of crop cycles to stabilize soil pH levels before a consistent positive effect on cane and sugar yields is observed with VR application. This possibility will be investigated in future studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Variable-rate lime application in Louisiana sugarcane production systems

Loading next page...
 
/lp/springer_journal/variable-rate-lime-application-in-louisiana-sugarcane-production-ySUhaemu2D
Publisher
Springer US
Copyright
Copyright © 2009 by US Government
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-009-9140-2
Publisher site
See Article on Publisher Site

Abstract

Precision agriculture may offer sugarcane growers a management system that decreases costs and maximizes profits, while minimizing any potential negative environmental impact. The utility of variable-rate (VR) lime application in the initial production year (plant cane) of a 3-year sugarcane crop cycle was investigated at three locations planted to the cultivar LCP 85–384 for a total of nine site-years. A conventional, uniform-rate (UR) lime application method was compared to a VR application method and a no-lime control. Prior to lime application, soil samples (0–200 mm) were taken on a 0.4 ha grid to produce VR application maps. Soil samples were also taken after each crop of the 3-year production cycle to determine effects of lime application on soil properties. The combined results showed that neither the UR nor VR lime application method consistently improved cane or sugar yields over the no-lime control. Cane and sugar yields at Naquin Farms (NF) were increased with both the UR and VR methods, with the UR method having a slight advantage. At St. Louis Plantation (SLP), only the VR method in the first-ratoon crop increased cane and sugar yields and there were no yield differences due to lime application at Ellendale Plantation (EP). At NF and SLP, application of lime in the plant-cane crop increased soil pH and available phosphorus over the 3-year production cycle. At EP, lime application did not influence any of the soil properties measured. The failure to get a yield response from lime application at SLP and EP may have been due to the fact that fertility levels at planting were already greater than those at NF and the nitrogen fertilizer rates used by the grower at EP were higher than those at either SLP or NF. This may have obscured any positive yield effects that would be realized from increased nutrient availability. It is also possible that multiple VR lime applications will be required over a number of crop cycles to stabilize soil pH levels before a consistent positive effect on cane and sugar yields is observed with VR application. This possibility will be investigated in future studies.

Journal

Precision AgricultureSpringer Journals

Published: Oct 8, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off