Variable 2-Microlocal Besov–Triebel–Lizorkin-Type Spaces

Variable 2-Microlocal Besov–Triebel–Lizorkin-Type Spaces This article is devoted to the study of variable 2-microlocal Besov-type and Triebel–Lizorkin-type spaces. These variable function spaces are defined via a Fourier-analytical approach. The authors then characterize these spaces by means of ϕ-transforms, Peetre maximal functions, smooth atoms, ball means of differences and approximations by analytic functions. As applications, some related Sobolev-type embeddings and trace theorems of these spaces are also established. Moreover, some obtained results, such as characterizations via approximations by analytic functions, are new even for the classical variable Besov and Triebel–Lizorkin spaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mathematica Sinica, English Series Springer Journals

Variable 2-Microlocal Besov–Triebel–Lizorkin-Type Spaces

Loading next page...
 
/lp/springer_journal/variable-2-microlocal-besov-triebel-lizorkin-type-spaces-85a9CHWopC
Publisher
Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
Copyright
Copyright © 2018 by Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Mathematics; Mathematics, general
ISSN
1439-8516
eISSN
1439-7617
D.O.I.
10.1007/s10114-018-7311-7
Publisher site
See Article on Publisher Site

Abstract

This article is devoted to the study of variable 2-microlocal Besov-type and Triebel–Lizorkin-type spaces. These variable function spaces are defined via a Fourier-analytical approach. The authors then characterize these spaces by means of ϕ-transforms, Peetre maximal functions, smooth atoms, ball means of differences and approximations by analytic functions. As applications, some related Sobolev-type embeddings and trace theorems of these spaces are also established. Moreover, some obtained results, such as characterizations via approximations by analytic functions, are new even for the classical variable Besov and Triebel–Lizorkin spaces.

Journal

Acta Mathematica Sinica, English SeriesSpringer Journals

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial