Vapor Barrier Properties and Mechanical Behaviors of Composite Hydroxypropyl Methylcelluose/Zein Nanoparticle Films

Vapor Barrier Properties and Mechanical Behaviors of Composite Hydroxypropyl Methylcelluose/Zein... Composite films of hydroxypropyl methylcellulose and zein nanoparticles (ZNP) were prepared to create a biopolymer-based film with reduced vapor permeability and potential for active-packaging applications. Microscopy verified the dispersion of ZNP with diameter of ~100 nm throughout the width and depth of the films, with ZNP forming sub-micrometer clusters of nanoparticles at loaded volume fractions >0.15. Incorporation of non-hygroscopic ZNP increased film-water contact angles to >70 degrees and decreased water vapor permeability of films by ~10–30%. Extensional measurements of films described an increase in tensile strength from 27 kPa to 49 kPA, a decreased capacity to elongate, and an initial increase followed by gradual decrease in Young’s moduli with increasing ZNP fractions. Decreased elasticity was observed within microscale regions of the films at higher ZNP volume fractions using dynamic force spectroscopy, and the trends were strongly correlated with bulk Young’s moduli of the composite films. A mathematical model rationalized the initially increased and subsequently decreased Young’s modulus by the change in ZNP dispersion/clustering combined with a collapse of the interfacial zone surrounding ZNP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Biophysics Springer Journals

Vapor Barrier Properties and Mechanical Behaviors of Composite Hydroxypropyl Methylcelluose/Zein Nanoparticle Films

Loading next page...
 
/lp/springer_journal/vapor-barrier-properties-and-mechanical-behaviors-of-composite-9G4cbe14Km
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Chemistry; Food Science; Biological and Medical Physics, Biophysics; Analytical Chemistry
ISSN
1557-1858
eISSN
1557-1866
D.O.I.
10.1007/s11483-017-9508-1
Publisher site
See Article on Publisher Site

Abstract

Composite films of hydroxypropyl methylcellulose and zein nanoparticles (ZNP) were prepared to create a biopolymer-based film with reduced vapor permeability and potential for active-packaging applications. Microscopy verified the dispersion of ZNP with diameter of ~100 nm throughout the width and depth of the films, with ZNP forming sub-micrometer clusters of nanoparticles at loaded volume fractions >0.15. Incorporation of non-hygroscopic ZNP increased film-water contact angles to >70 degrees and decreased water vapor permeability of films by ~10–30%. Extensional measurements of films described an increase in tensile strength from 27 kPa to 49 kPA, a decreased capacity to elongate, and an initial increase followed by gradual decrease in Young’s moduli with increasing ZNP fractions. Decreased elasticity was observed within microscale regions of the films at higher ZNP volume fractions using dynamic force spectroscopy, and the trends were strongly correlated with bulk Young’s moduli of the composite films. A mathematical model rationalized the initially increased and subsequently decreased Young’s modulus by the change in ZNP dispersion/clustering combined with a collapse of the interfacial zone surrounding ZNP.

Journal

Food BiophysicsSpringer Journals

Published: Dec 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off