Vanadium separation with activated carbon and iron/activated carbon nanocomposites in fixed bed column: experimental and modelling study

Vanadium separation with activated carbon and iron/activated carbon nanocomposites in fixed bed... In this work, iron nanoparticles were impregnated onto a commercial activated carbon surface to produce a novel adsorbent called iron-activated carbon nanocomposite (I-AC). Commercial activated carbon (CAC) and I-AC were used for vanadium separation in a fixed-bed column. The effects of various operating parameters such as inlet vanadium ion concentration, adsorbent dose and volumetric flow rate on vanadium separation performance of CAC were investigated. The performance of both adsorbents was compared in three adsorption/desorption cycles. The experimental breakthrough curves of vanadium ions in the fixed-bed column were modeled using the film-pore-surface diffusion model (FPSDM). The four mass transfer parameters characterizing this model, namely the external mass-transfer coefficient (k f ), pore and surface diffusion coefficients (D p and D s ), and axial dispersion coefficient (D L ) were evaluated through the model. Modelling and experimental results showed that the I-AC nanocomposite has a better performance for vanadium separation in comparison to AC. Sensitivity analysis on the FPSDM showed that the pore and surface diffusion, external mass transfer and axial dispersion play a significant role in vanadium separation using the I-AC. On the other hand, surface diffusion resulted to be relatively less important when CAC was used. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Vanadium separation with activated carbon and iron/activated carbon nanocomposites in fixed bed column: experimental and modelling study

Loading next page...
 
/lp/springer_journal/vanadium-separation-with-activated-carbon-and-iron-activated-carbon-vWD8GT3ZHZ
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2760-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial