Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area

Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation... A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Boundary-Layer Meteorology Springer Journals

Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area

Loading next page...
 
/lp/springer_journal/validation-of-simplified-urban-canopy-aerodynamic-parametrizations-59meP0S0m7
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Atmospheric Sciences; Meteorology; Atmospheric Protection/Air Quality Control/Air Pollution
ISSN
0006-8314
eISSN
1573-1472
DOI
10.1007/s10546-018-0345-7
Publisher site
See Article on Publisher Site

Abstract

A steady-state Reynolds-averaged Navier–Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349–1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald’s empirical formulations (Boundary-Layer Meteorol 97:25–45, 2000), Coceal and Belcher’s mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131–151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate.

Journal

Boundary-Layer MeteorologySpringer Journals

Published: Feb 27, 2018

References