Vacuum activation-induced Ti3+ and carbon co-doped TiO2 with enhanced solar light photo-catalytic activity

Vacuum activation-induced Ti3+ and carbon co-doped TiO2 with enhanced solar light photo-catalytic... Ti3+ and carbon co-doped TiO2 photocatalysts were prepared hydrothermally to introduce the carbon, and followed by simple vacuum activation to achieve the Ti3+ self-doping. The prepared co-doped photocatalysts were characterized by XRD, TEM, UV–Vis absorption spectra, EPR, and XPS. It was found that the co-doped TiO2 has dispersed nanoparticles and a narrower band-gap compared with the un-doped TiO2 and single-doped TiO2. The experimental results displayed that the coke carbon generated on the surface of co-doped TiO2 acts as a photosensitizer and has the photosensitization effect under solar light irradiation. Except for the carbon sensitization effect, the Ti3+ self-doping modification has a synergistic effect which is the reason for the effective photo-degradation of methyl orange under simulated solar light irradiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Vacuum activation-induced Ti3+ and carbon co-doped TiO2 with enhanced solar light photo-catalytic activity

Loading next page...
 
/lp/springer_journal/vacuum-activation-induced-ti3-and-carbon-co-doped-tio2-with-enhanced-ckYxkvk0BG
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2268-y
Publisher site
See Article on Publisher Site

Abstract

Ti3+ and carbon co-doped TiO2 photocatalysts were prepared hydrothermally to introduce the carbon, and followed by simple vacuum activation to achieve the Ti3+ self-doping. The prepared co-doped photocatalysts were characterized by XRD, TEM, UV–Vis absorption spectra, EPR, and XPS. It was found that the co-doped TiO2 has dispersed nanoparticles and a narrower band-gap compared with the un-doped TiO2 and single-doped TiO2. The experimental results displayed that the coke carbon generated on the surface of co-doped TiO2 acts as a photosensitizer and has the photosensitization effect under solar light irradiation. Except for the carbon sensitization effect, the Ti3+ self-doping modification has a synergistic effect which is the reason for the effective photo-degradation of methyl orange under simulated solar light irradiation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 9, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off