Vaccinia virus dissemination requires p21-activated kinase 1

Vaccinia virus dissemination requires p21-activated kinase 1 The orthopoxvirus vaccinia virus (VACV) interacts with both actin and microtubule cytoskeletons in order to generate and spread progeny virions. Here, we present evidence demonstrating the involvement of PAK1 (p21-activated kinase 1) in the dissemination of VACV. Although PAK1 activation has previously been associated with optimal VACV entry via macropinocytosis, its absence does not affect the production of intracellular mature virions (IMVs) and extracellular enveloped virions (EEVs). Our data demonstrate that low-multiplicity infection of PAK1-/- MEFs leads to a reduction in plaque size followed by decreased production of both IMVs and EEVs, strongly suggesting that virus spread was impaired in the absence of PAK1. Confocal and scanning electron microscopy showed a substantial reduction in the amount of VACV-induced actin tails in PAK1-/- MEFs, but no significant alteration in the total amount of cell-associated enveloped virions (CEVs). Furthermore, the decreased VACV dissemination in PAK1-/- cells was correlated with the absence of phosphorylated ARPC1 (Thr21), a downstream target of PAK1 and a key regulatory subunit of the ARP2/3 complex, which is necessary for the formation of actin tails and viral spread. We conclude that PAK1, besides its role in virus entry, also plays a relevant role in VACV dissemination. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals
Loading next page...
 
/lp/springer_journal/vaccinia-virus-dissemination-requires-p21-activated-kinase-1-WX6h9uLk3a
Publisher
Springer Vienna
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-016-2996-3
Publisher site
See Article on Publisher Site

Abstract

The orthopoxvirus vaccinia virus (VACV) interacts with both actin and microtubule cytoskeletons in order to generate and spread progeny virions. Here, we present evidence demonstrating the involvement of PAK1 (p21-activated kinase 1) in the dissemination of VACV. Although PAK1 activation has previously been associated with optimal VACV entry via macropinocytosis, its absence does not affect the production of intracellular mature virions (IMVs) and extracellular enveloped virions (EEVs). Our data demonstrate that low-multiplicity infection of PAK1-/- MEFs leads to a reduction in plaque size followed by decreased production of both IMVs and EEVs, strongly suggesting that virus spread was impaired in the absence of PAK1. Confocal and scanning electron microscopy showed a substantial reduction in the amount of VACV-induced actin tails in PAK1-/- MEFs, but no significant alteration in the total amount of cell-associated enveloped virions (CEVs). Furthermore, the decreased VACV dissemination in PAK1-/- cells was correlated with the absence of phosphorylated ARPC1 (Thr21), a downstream target of PAK1 and a key regulatory subunit of the ARP2/3 complex, which is necessary for the formation of actin tails and viral spread. We conclude that PAK1, besides its role in virus entry, also plays a relevant role in VACV dissemination.

Journal

Archives of VirologySpringer Journals

Published: Jul 27, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off