UV-assisted synthesis of reduced graphene oxide–ZnO nanorod composites immobilized on Zn foil with enhanced photocatalytic performance

UV-assisted synthesis of reduced graphene oxide–ZnO nanorod composites immobilized on Zn foil... ZnO nanorods were hydrothermally grown on Zn foil in an alkaline solution and the immobilized nanorods were subsequently hybridized with reduced graphene oxide (rGO) through UV-assisted photocatalytic reduction of graphene oxide (GO). X-ray diffraction analysis confirmed the vertical growth of ZnO nanorods while the incorporation of rGO to ZnO was investigated by scanning electron microscopy and photoluminescence spectroscopy. The successful photocatalytic reduction of GO was demonstrated by means of Raman spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic behavior and photostability of the sandwich-like rGO–ZnO composite were studied through decolorization of the aqueous solution of acid orange 7 under UV-C illumination. The rGO–ZnO photocatalyst presented higher dye decomposition efficiency than pure ZnO. The hybridization of rGO and ZnO led to a 40 % increase in the pseudo-first-order kinetic model’s rate constant and an enhancement of the photostability. The role of incorporation of rGO in enhancement of the ZnO’s photostability has been elucidated in the light of specific features of the sandwich-like architecture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

UV-assisted synthesis of reduced graphene oxide–ZnO nanorod composites immobilized on Zn foil with enhanced photocatalytic performance

Loading next page...
 
/lp/springer_journal/uv-assisted-synthesis-of-reduced-graphene-oxide-zno-nanorod-composites-prcjRnUKcK
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2291-z
Publisher site
See Article on Publisher Site

Abstract

ZnO nanorods were hydrothermally grown on Zn foil in an alkaline solution and the immobilized nanorods were subsequently hybridized with reduced graphene oxide (rGO) through UV-assisted photocatalytic reduction of graphene oxide (GO). X-ray diffraction analysis confirmed the vertical growth of ZnO nanorods while the incorporation of rGO to ZnO was investigated by scanning electron microscopy and photoluminescence spectroscopy. The successful photocatalytic reduction of GO was demonstrated by means of Raman spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic behavior and photostability of the sandwich-like rGO–ZnO composite were studied through decolorization of the aqueous solution of acid orange 7 under UV-C illumination. The rGO–ZnO photocatalyst presented higher dye decomposition efficiency than pure ZnO. The hybridization of rGO and ZnO led to a 40 % increase in the pseudo-first-order kinetic model’s rate constant and an enhancement of the photostability. The role of incorporation of rGO in enhancement of the ZnO’s photostability has been elucidated in the light of specific features of the sandwich-like architecture.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 8, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off