Utilizing of Solar Energy for Extracting Freshwater from Atmospheric Air

Utilizing of Solar Energy for Extracting Freshwater from Atmospheric Air It presents a method to extract pure water from atmospheric air, which depends on intensifying the water vapor from the air. The plant was designed to perform the optimum levels to produce high quality water with minimal electricity consumption. The harvesting water was inspected and analyzed based on ISO/IEC 17025 method to check the purity of water. This study also investigates the potential of a solar powered using for atmospheric water generation (AWG) as a new option for fresh water production. A proposed solar AWG unit was assembled, analyzed and modeled using HOMER software. The results demonstrated that the water produced by the water extraction plant is pure, safe, economical, and acceptably tasting. It can be used as drinking water after treated by filter and disinfected by Ultra Violet Light (UV) technique. The feasibility analysis showed that there is a potential to adopt solar powered of AWG as strategic and alternative option for a small area; which is suffering from a shortage of drinking water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Solar Energy Springer Journals

Utilizing of Solar Energy for Extracting Freshwater from Atmospheric Air

Loading next page...
 
/lp/springer_journal/utilizing-of-solar-energy-for-extracting-freshwater-from-atmospheric-aykM7rafP3
Publisher
Pleiades Publishing
Copyright
Copyright © 2018 by Allerton Press, Inc.
Subject
Engineering; Power Electronics, Electrical Machines and Networks
ISSN
0003-701X
eISSN
1934-9424
D.O.I.
10.3103/S0003701X18020044
Publisher site
See Article on Publisher Site

Abstract

It presents a method to extract pure water from atmospheric air, which depends on intensifying the water vapor from the air. The plant was designed to perform the optimum levels to produce high quality water with minimal electricity consumption. The harvesting water was inspected and analyzed based on ISO/IEC 17025 method to check the purity of water. This study also investigates the potential of a solar powered using for atmospheric water generation (AWG) as a new option for fresh water production. A proposed solar AWG unit was assembled, analyzed and modeled using HOMER software. The results demonstrated that the water produced by the water extraction plant is pure, safe, economical, and acceptably tasting. It can be used as drinking water after treated by filter and disinfected by Ultra Violet Light (UV) technique. The feasibility analysis showed that there is a potential to adopt solar powered of AWG as strategic and alternative option for a small area; which is suffering from a shortage of drinking water.

Journal

Applied Solar EnergySpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off