Utilisation of a waste biomass, walnut shells, to produce bio-products via pyrolysis: investigation using ISO-conversional and neural network methods

Utilisation of a waste biomass, walnut shells, to produce bio-products via pyrolysis:... This study was conducted to investigate the kinetic, thermodynamics and the reaction mechanism of pyrolysis of native walnut shells of Kashmir, India. Thermal degradation experiments were performed at three heating rates of 10, 25, and 50 K min−1 to calculate the kinetic and thermodynamic parameters, using iso-conversional Kissinger-Akahira-Sunrose (KAS) and Ozawa-Flynn-Wall (OFW) models. The reaction mechanism was predicted by applying Coats-Redfern (CR) method. Moreover, an artificial neural network (ANN) simulation was used to obtain best fit points after comparing the experimental data with the predicted data points. Average activation energy was calculated from the thermogravimetric study was found to be in the range of 146.03–148.89 kJ mol−1, while the Gibbs free energy (ΔG) value for walnut shells was found to be ~180 kJ mol−1. The most appropriate degradation mechanism was found to be based on diffusion and chemical reaction for the temperature range under study. The broad characterisation along with the values of thermodynamic parameters show that the walnut shells can be used as an economical as well as eco-friendly bio-energy feed-stock for pyrolysis. The reaction mechanism of thermal degradation of walnut shells was found to be consisting of two broader zones based on conversion achieved, zone I (0.2 ≤ α ≤ 0.4) and zone II (0.4 ≤ α ≤ 0.8). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomass Conversion and Biorefinery Springer Journals

Utilisation of a waste biomass, walnut shells, to produce bio-products via pyrolysis: investigation using ISO-conversional and neural network methods

Loading next page...
 
/lp/springer_journal/utilisation-of-a-waste-biomass-walnut-shells-to-produce-bio-products-a1dtR5oGlM
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Renewable and Green Energy; Renewable and Green Energy; Biotechnology
ISSN
2190-6815
eISSN
2190-6823
D.O.I.
10.1007/s13399-018-0311-0
Publisher site
See Article on Publisher Site

Abstract

This study was conducted to investigate the kinetic, thermodynamics and the reaction mechanism of pyrolysis of native walnut shells of Kashmir, India. Thermal degradation experiments were performed at three heating rates of 10, 25, and 50 K min−1 to calculate the kinetic and thermodynamic parameters, using iso-conversional Kissinger-Akahira-Sunrose (KAS) and Ozawa-Flynn-Wall (OFW) models. The reaction mechanism was predicted by applying Coats-Redfern (CR) method. Moreover, an artificial neural network (ANN) simulation was used to obtain best fit points after comparing the experimental data with the predicted data points. Average activation energy was calculated from the thermogravimetric study was found to be in the range of 146.03–148.89 kJ mol−1, while the Gibbs free energy (ΔG) value for walnut shells was found to be ~180 kJ mol−1. The most appropriate degradation mechanism was found to be based on diffusion and chemical reaction for the temperature range under study. The broad characterisation along with the values of thermodynamic parameters show that the walnut shells can be used as an economical as well as eco-friendly bio-energy feed-stock for pyrolysis. The reaction mechanism of thermal degradation of walnut shells was found to be consisting of two broader zones based on conversion achieved, zone I (0.2 ≤ α ≤ 0.4) and zone II (0.4 ≤ α ≤ 0.8).

Journal

Biomass Conversion and BiorefinerySpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off