Using unsupervised learning techniques to assess interactions among complex traits in soybeans

Using unsupervised learning techniques to assess interactions among complex traits in soybeans Soybean yield components and agronomic traits are connected through physiological pathways that impose tradeoffs through genetic and environmental constraints. Our primary aim is to assess the interdependence of soybean traits by using unsupervised machine learning techniques to divide phenotypic associations into environmental and genetic associations. This study was performed on large scale, jointly analyzing 14 quantitative traits in a large multi-parental population designed for genetic studies. We collected phenotypes from 2012 to 2015 from a soybean nested association panel with 40 families of approximately 140 individuals each. Pearson and Spearman correlations measured phenotypic associations. A multivariate mixed linear model provided genotypic and environmental correlations. To evaluate relationships among traits, the study used principal component and undirected graphical models from phenotypic, genotypic, and environmental correlation matrices. Results indicate that high phenotypic correlation occurs when traits display both genetic and environmental correlations. In genetic terms, length of reproductive period, node number, and canopy coverage play important roles in determining yield potential. Optimal grain yield production occurs when the growing environment favors faster canopy closure and extended reproductive length. Environmental associations found among yield components give insight into the nature of yield component compensation. The use of unsupervised learning methods provides a good framework for investigating interactions among various quantitative traits and defining target traits for breeding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Euphytica Springer Journals

Using unsupervised learning techniques to assess interactions among complex traits in soybeans

Loading next page...
 
/lp/springer_journal/using-unsupervised-learning-techniques-to-assess-interactions-among-e8mSVokmGV
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Sciences; Plant Genetics and Genomics; Plant Pathology; Plant Physiology; Biotechnology
ISSN
0014-2336
eISSN
1573-5060
D.O.I.
10.1007/s10681-017-1975-4
Publisher site
See Article on Publisher Site

Abstract

Soybean yield components and agronomic traits are connected through physiological pathways that impose tradeoffs through genetic and environmental constraints. Our primary aim is to assess the interdependence of soybean traits by using unsupervised machine learning techniques to divide phenotypic associations into environmental and genetic associations. This study was performed on large scale, jointly analyzing 14 quantitative traits in a large multi-parental population designed for genetic studies. We collected phenotypes from 2012 to 2015 from a soybean nested association panel with 40 families of approximately 140 individuals each. Pearson and Spearman correlations measured phenotypic associations. A multivariate mixed linear model provided genotypic and environmental correlations. To evaluate relationships among traits, the study used principal component and undirected graphical models from phenotypic, genotypic, and environmental correlation matrices. Results indicate that high phenotypic correlation occurs when traits display both genetic and environmental correlations. In genetic terms, length of reproductive period, node number, and canopy coverage play important roles in determining yield potential. Optimal grain yield production occurs when the growing environment favors faster canopy closure and extended reproductive length. Environmental associations found among yield components give insight into the nature of yield component compensation. The use of unsupervised learning methods provides a good framework for investigating interactions among various quantitative traits and defining target traits for breeding.

Journal

EuphyticaSpringer Journals

Published: Aug 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off