Using the roots as test objects for the assessment of biological action of chemical substances

Using the roots as test objects for the assessment of biological action of chemical substances A sound approach to the root usage as model objects for the assessment of biological activity of chemical substances and environmental stressors is suggested on the basis of the analysis of various inhibitor and radiation action on the root. It is analyzed on the cellular level, how steady growth is maintained under various stress action. Special attention is paid to the meristematic cell transition to elongation, which is controlled by the two groups of processes: the first ones determine the rate of cell proliferation and the second ones determine the cell life span in the meristem. The rate of cell proliferation is rather sensitive to various treatments; in contrast, the processes controlling the cell life span in the meristem are rather stable. It is shown that studying the kinetics of the root growth rate gives much more information than a single measurement of root length increment. A possibility of root usage for the search of efficient cytostatics is exemplified. The role of the quiescent center in growth resumption after various stressful treatments is considered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Using the roots as test objects for the assessment of biological action of chemical substances

Loading next page...
 
/lp/springer_journal/using-the-roots-as-test-objects-for-the-assessment-of-biological-xum7ORZzP7
Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711060082
Publisher site
See Article on Publisher Site

Abstract

A sound approach to the root usage as model objects for the assessment of biological activity of chemical substances and environmental stressors is suggested on the basis of the analysis of various inhibitor and radiation action on the root. It is analyzed on the cellular level, how steady growth is maintained under various stress action. Special attention is paid to the meristematic cell transition to elongation, which is controlled by the two groups of processes: the first ones determine the rate of cell proliferation and the second ones determine the cell life span in the meristem. The rate of cell proliferation is rather sensitive to various treatments; in contrast, the processes controlling the cell life span in the meristem are rather stable. It is shown that studying the kinetics of the root growth rate gives much more information than a single measurement of root length increment. A possibility of root usage for the search of efficient cytostatics is exemplified. The role of the quiescent center in growth resumption after various stressful treatments is considered.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 12, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off