Using stereo multigrid DPIV (SMDPIV) measurements to investigate the vortical skeleton behind a finite-span flapping wing

Using stereo multigrid DPIV (SMDPIV) measurements to investigate the vortical skeleton behind a... The structure of the flow behind wings with finite span (3D) is significantly more complex than the flow behind infinite span (2D) wings. It has been shown that the presence of wingtip vortices behind finite span wings significantly modifies the geometry of the wake flow. It is felt that this modification alters the dynamics of interaction between leading and trailing edge vorticity in a manner that affects the ability of 2D flapping wings to produce thrust. A model of the mean flow skeleton has been proposed from qualitative flow visualization experiments. An unambiguous quantitative representation of the actual flow is required for comparison to the proposed model. To accomplish this the full 3D 3C velocity is required in the volume behind the 3D flapping wing. It is proposed to use stereoscopic multigrid digital particle image velocimetry (SMDPIV) measurements to investigate this unsteady oscillatory flow. This paper reports preliminary SMDPIV measurements along the plane of a symmetrical NACA-profile wing at a Strouhal number of 0.35. Phase averaged measurements are used to investigate the complex flow topology and the influence of the forcing flow on the evolution of the large scale structure of a jet-flow. This paper focuses on optimizing the SMDPIV experimental methodology applied to liquid flows. By refining the 2D 3C technique, the 3D topology of the flow can be investigated with a high degree of accuracy and repeatability. Preliminary results show that the flow is characterized by two pairs of coherent structures of positive and negative vorticity. The arrangement of these structures in the flow is controlled by the motion of the wing. Vorticity of opposite rotation is shed at the extreme heave and pitch positions of the aerofoil to set up a thrust indicative vortex street in support of the suggested topological model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Using stereo multigrid DPIV (SMDPIV) measurements to investigate the vortical skeleton behind a finite-span flapping wing

Loading next page...
 
/lp/springer_journal/using-stereo-multigrid-dpiv-smdpiv-measurements-to-investigate-the-CGvB9p5r8V
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-0971-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial