Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils

Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils The extraction efficiency of heavy metals from soils using three forms of gamma poly-glutamic acid (γ-PGA) as the washing agents was investigated. Controlling factors including agent concentrations, extraction time, pH, and liquid to soil ratio were evaluated to determine the optimum operational conditions. The distribution of heavy metal species in soils before and after extraction processes was analyzed. Up to 46 and 74% of heavy metal removal efficiencies were achieved with one round and a sequential extraction process using H-bonding form of γ-PGA (200 mM) with washing time of 40 min, liquid to solid ratio of 10 to 1, and pH of 6. Major heavy metal removal mechanisms were (1) γ-PGA-promoted dissolution and (2) complexation of heavy metal with free carboxyl groups in γ-PGA, which resulted in heavy metal desorption from soils. Metal species on soils were redistributed after washing, and soils were remediated without destruction of soil structures and productivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils

Loading next page...
 
/lp/springer_journal/using-poly-glutamic-acid-as-soil-washing-agent-to-remediate-heavy-3qj0RpTE5y
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9235-7
Publisher site
See Article on Publisher Site

Abstract

The extraction efficiency of heavy metals from soils using three forms of gamma poly-glutamic acid (γ-PGA) as the washing agents was investigated. Controlling factors including agent concentrations, extraction time, pH, and liquid to soil ratio were evaluated to determine the optimum operational conditions. The distribution of heavy metal species in soils before and after extraction processes was analyzed. Up to 46 and 74% of heavy metal removal efficiencies were achieved with one round and a sequential extraction process using H-bonding form of γ-PGA (200 mM) with washing time of 40 min, liquid to solid ratio of 10 to 1, and pH of 6. Major heavy metal removal mechanisms were (1) γ-PGA-promoted dissolution and (2) complexation of heavy metal with free carboxyl groups in γ-PGA, which resulted in heavy metal desorption from soils. Metal species on soils were redistributed after washing, and soils were remediated without destruction of soil structures and productivity.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: May 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off