Using Pearson Correlation to Improve Envelopes around the Distributions of Functions

Using Pearson Correlation to Improve Envelopes around the Distributions of Functions Given two random variables whose dependency relationship is unknown, if a new random variable is defined whose samples are some function of samples of the given random variables, the distribution of this function is not fully determined. However, envelopes can be computed that bound the space through which its cumulative distribution function must pass. If those envelopes could be made to bound a smaller space, the cumulative distribution, while still not fully determined, would at least be more constrained. We show how information about the correlation between values of given random variables can lead to better envelopes around the cumulative distribution of a function of their values. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Using Pearson Correlation to Improve Envelopes around the Distributions of Functions

Loading next page...
 
/lp/springer_journal/using-pearson-correlation-to-improve-envelopes-around-the-EoSxe1YsdT
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/B:REOM.0000015850.27690.3b
Publisher site
See Article on Publisher Site

Abstract

Given two random variables whose dependency relationship is unknown, if a new random variable is defined whose samples are some function of samples of the given random variables, the distribution of this function is not fully determined. However, envelopes can be computed that bound the space through which its cumulative distribution function must pass. If those envelopes could be made to bound a smaller space, the cumulative distribution, while still not fully determined, would at least be more constrained. We show how information about the correlation between values of given random variables can lead to better envelopes around the cumulative distribution of a function of their values.

Journal

Reliable ComputingSpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off