Using non-ideal gates to implement universal quantum computing between uncoupled qubits

Using non-ideal gates to implement universal quantum computing between uncoupled qubits In many physical systems, when implementing quantum gate operations unavoidable global and relative phases occur as by-products due to the internal structure of the governing Hamiltonian. To correct, additional phase rotation gates are used, which increases the computational overhead. Here, we show how these phase by-products can actually be used to our advantage by using them to implement universal quantum computing between qubits not directly coupled to each other. The gate operations, CNOT, Toffoli, and swap gates, require much less computational overhead than present schemes, and are achieved with fidelity greater than 99%. We then present a linear nearest-neighbor architecture that takes full advantage of the phase by-products, and we show how to implement gates from a universal set efficiently in this layout. In this scheme gate operations are realized by only varying a single control parameter per data qubit, and the ability to tune couplings is not required. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Using non-ideal gates to implement universal quantum computing between uncoupled qubits

Loading next page...
 
/lp/springer_journal/using-non-ideal-gates-to-implement-universal-quantum-computing-between-wfLHyGVd18
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0444-1
Publisher site
See Article on Publisher Site

Abstract

In many physical systems, when implementing quantum gate operations unavoidable global and relative phases occur as by-products due to the internal structure of the governing Hamiltonian. To correct, additional phase rotation gates are used, which increases the computational overhead. Here, we show how these phase by-products can actually be used to our advantage by using them to implement universal quantum computing between qubits not directly coupled to each other. The gate operations, CNOT, Toffoli, and swap gates, require much less computational overhead than present schemes, and are achieved with fidelity greater than 99%. We then present a linear nearest-neighbor architecture that takes full advantage of the phase by-products, and we show how to implement gates from a universal set efficiently in this layout. In this scheme gate operations are realized by only varying a single control parameter per data qubit, and the ability to tune couplings is not required.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jul 8, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off