Using model uncertainty for robust optimization in approximate inference control

Using model uncertainty for robust optimization in approximate inference control Recently, the optimization-by-inference approach has been proposed as a new means for solving high-dimensional optimization problems quickly. Approximate Inference COntrol (AICO) is one of the most successful and promising methods that implement the optimization-by-inference approach. AICO is able to solve stochastic optimal control problems and has already been successfully used in many applications. However, it is known that the iterative inference of AICO sometimes fails to converge to the optimal solution. To make the optimization more robust, in this paper, we propose to take model uncertainty into account. In AICO, the cost function to be minimized is accurate around a particular state of a given stochastic system, but the accuracy is uncertain in regions far from that state. Because using such an uncertain function is harmful to the convergence, we modify AICO, so that it does not use the function in uncertain regions. Our method is easy to implement and does not add much computational time to the original AICO. Experiments using two different scenarios show that our method substantially improves AICO in terms of the rate at which the algorithm produces convergent results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Artificial Life and Robotics Springer Journals

Using model uncertainty for robust optimization in approximate inference control

Loading next page...
 
/lp/springer_journal/using-model-uncertainty-for-robust-optimization-in-approximate-JOj8VrY1eh
Publisher
Springer Japan
Copyright
Copyright © 2017 by ISAROB
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Computation by Abstract Devices; Control, Robotics, Mechatronics
ISSN
1433-5298
eISSN
1614-7456
D.O.I.
10.1007/s10015-017-0361-6
Publisher site
See Article on Publisher Site

Abstract

Recently, the optimization-by-inference approach has been proposed as a new means for solving high-dimensional optimization problems quickly. Approximate Inference COntrol (AICO) is one of the most successful and promising methods that implement the optimization-by-inference approach. AICO is able to solve stochastic optimal control problems and has already been successfully used in many applications. However, it is known that the iterative inference of AICO sometimes fails to converge to the optimal solution. To make the optimization more robust, in this paper, we propose to take model uncertainty into account. In AICO, the cost function to be minimized is accurate around a particular state of a given stochastic system, but the accuracy is uncertain in regions far from that state. Because using such an uncertain function is harmful to the convergence, we modify AICO, so that it does not use the function in uncertain regions. Our method is easy to implement and does not add much computational time to the original AICO. Experiments using two different scenarios show that our method substantially improves AICO in terms of the rate at which the algorithm produces convergent results.

Journal

Artificial Life and RoboticsSpringer Journals

Published: Mar 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off