Using Literal and Grammatical Statistics for Authorship Attribution

Using Literal and Grammatical Statistics for Authorship Attribution Markov chains are used as a formal mathematical model for sequences of elements of a text. This model is applied for authorship attribution of texts. As elements of a text, we consider sequences of letters or sequences of grammatical classes of words. It turns out that the frequencies of occurrences of letter pairs and pairs of grammatical classes in a Russian text are rather stable characteristics of an author and, apparently, they could be used in disputed authorship attribution. A comparison of results for various modifications of the method using both letters and grammatical classes is given. Experimental research involves 385 texts of 82 writers. In the Appendix, the research of D.V. Khmelev is described, where data compression algorithms are applied to authorship attribution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

Using Literal and Grammatical Statistics for Authorship Attribution

Loading next page...
 
/lp/springer_journal/using-literal-and-grammatical-statistics-for-authorship-attribution-99TqnBm623
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1023/A:1010478226705
Publisher site
See Article on Publisher Site

Abstract

Markov chains are used as a formal mathematical model for sequences of elements of a text. This model is applied for authorship attribution of texts. As elements of a text, we consider sequences of letters or sequences of grammatical classes of words. It turns out that the frequencies of occurrences of letter pairs and pairs of grammatical classes in a Russian text are rather stable characteristics of an author and, apparently, they could be used in disputed authorship attribution. A comparison of results for various modifications of the method using both letters and grammatical classes is given. Experimental research involves 385 texts of 82 writers. In the Appendix, the research of D.V. Khmelev is described, where data compression algorithms are applied to authorship attribution.

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off